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Glossary of terms 
Hotspot: A life cycle stage, process or elementary flow, which accounts for a significant 
proportion of a product’s impact on a planetary boundary or a dimension of the social 
foundation. 
 
Hotspots Analysis: The rapid collection and analysis of information resources, such as LCAs, 
stakeholder interests, research, and expert opinions in order to identify and prioritise the most 
significant social and environmental sustainability impacts. The results of this qualitative 
process will then guide more detailed research. 
 
Impact: A verified breach of defined planetary foundation or social foundation by an activity 
in a product’s lifecycle.  
 
Impact category: a class or category of actual or potential negative impact on planetary or 
social foundation by an activity in a product’s lifecycle.  
 
Key informants: Interview subjects who have an overview of activities in a particular field of 
activity; in this case, those with a meso-level understanding of the mobile phone lifecycle 
(e.g. investors, producers, but not workers or consumers). 
 
Planetary Boundaries: the non-negotiable planetary preconditions that humanity needs to 
respect in order to avoid the risk of deleterious or even catastrophic environmental change. 
[1], [2].   The nine boundaries are climate change, novel entities, ozone depletion, aerosol 
loading, ocean acidification, biochemical flows, freshwater use, land-system change, and 
biosphere integrity. Between the planetary boundaries and social foundation lies an 
environmentally safe and socially just space in which humanity can thrive. 
 
Producer: The company which produces and markets a product, in this case a mobile phone; 
usually the owner of the brand and owner/director of the product life cycle.  
 
Product lifecycle: Based on lifecycle thinking, a product lifecycle consists of activities that 
need to take place in order to produce and consume a project. These activities can be 
described as phases: and idea and design phase, the production phase including material 
processing, the use and service phase, and the end of life phase. 
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Regulatory Ecology: The result of a mapping of a system of polycentric regulation; useful 
for understanding regulation based on a polycentric approach involving four modes of 
regulatory constraint (law, markets, social norms, materials/design). 
 
Risk: A potential impact, that is an activity in a product’s lifecycle that poses a threat of a 
breach of defined planetary boundaries or social dimensions.   
 
Salience: A qualitative assessment of the significance of an impact or risk (identified in a 
particular lifecycle phase) to the planetary boundaries and social foundation.  
 
Social Foundation: the minimum standards of living conditions and human rights below 
which people can be said to be living in deprivation The twelve dimensions of the social 
foundation are derived from internationally agreed minimum social standards, as identified by 
the world’s governments in the Sustainable Development Goals in 2015. The twelve social 
dimensions are food, health, education, income & work, water & sanitation, energy, gender 
equality, social equity, housing, political voice, peace & justice, and networks. Between the 
social foundation and planetary boundaries lies an environmentally safe and socially just 
space in which humanity can thrive [3]. 
 
Social sustainability: Human activity that meets minimum standards of social wellbeing that 
protects against critical human deprivations.  
 
Stakeholders: Individuals, groups, communities or organizations that have an interest or 
concern in a product’s life cycle.   
 
Sustainability: A quality of human activity, which does not conflict with the Planetary 
Boundaries and the Social Foundation.  
 
Sustainability Hot Spot Analysis: A tool for identifying and visualising social and 
environmental hotspots. 
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1. Introduction  
Sustainable Market Actors for Responsible Trade (SMART) is a Horizon2020-financed 
research project that seeks to advance understanding on how non-development policies and 
regulations reinforce or undermine development policies. We study the barriers and drivers 
for market actors' contribution to the UN Sustainable Development Goals within planetary 
boundaries, with the aim of achieving Policy Coherence for Development. We analyse the 
regulatory complexity within which European market actors operate, both the private sector 
and the public sector in its many market roles with a focus especially on international supply 
chains of products sold in Europe. This report, Sustainability Hotspots Analysis of the Mobile 
Phone Lifecycle, is one of the deliverables in the SMART project and presents an analysis of 
the social and environmental externalities in the lifecycle of the mobile phone. 
 
A Hotspots Analysis is a qualitative approach to rapidly identify and prioritize social and 
environmental sustainability impacts in a product lifecycle. A Hotspots Analysis should not 
be mistaken for an assessment of the sustainability of a product lifecycle: it doesn’t replace 
Life Cycle Assessments (LCAs) or other evaluations of sustainability, nor does it aim to 
generate new data about the sustainability of a product. Rather, a Hotspots Analysis offers a 
method that draws on scientific research and stakeholder inputs to select particular impacts in 
a product lifecycle as priorities for further research. In other words, a Hotspots Analysis is 
true to its name: an analysis that rapidly identifies the significant manifestations of 
unsustainable activity in a product lifecycle.  
 
The Hotspots Analysis of mobile phones contained in this report was conducted as part of 
Work Package 4 (WP4) of the Sustainable Actors for Responsible Trade (SMART) project 
(2016-2020)1. Work Package 4 is concerned with the social and environmental externalities in 
the product lifecycle of mobile phones, as part of the overall concern of the SMART project 
with EU policy coherence for social and economic development. The objectives of Work 
Package 4 are: 
 
o To identify the social and environmental hotspots in the lifecycle of two mobile phones.  

 
o To identify the regulatory ecology of a selection of the identified hotspots. Further 

research will investigate the legal, social, economic, material (design), and environmental 
constraints and opportunities for improve sustainability by high tech companies seeking to 
make the transition to sustainable market behaviour.  
 

o To contribute to the SMART project’s proposals for changes to law and policy at the EU 
level for improved social and environmental sustainability and, on the basis of research 
into the product lifecycle of mobile phones, to contribute to critical perspectives on 
reforms suggested by scholars in the SMART project. 

This report fulfils the first objective: it identifies the social and environmental hotspots in the 
lifecycle (LC) of phones. To this end, the research that went into this report asked a basic 
question: What are the environmental and social hotspots in the mobile phone lifecycle?  
 

                                                        
1 SMART: http://smart.uio.no 
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To answer that question, the research presented in this report proceeded in two steps (as 
described in the project work plan for Work Package 4 of the SMART project). The initial 
phase in the research involved 1) Establishing the phases in the mobile phone life cycle and 
identifying the corresponding environmental and social risks in each phase of the mobile 
phone LC; and 2) Identifying the hotspots in the LC.  

On the basis of hotspots analysis in this report, and based on input from the project 
stakeholders2, a selection of priority hotspots for further research will be determined by the 
project researchers.  Under the subsequent phases of the project, the research will 3) analyse 
selected hotspots to better understand the regulatory ecology (see glossary) that sustains the 
identifies unsustainable behaviour, and 4) provide inputs to the formulation of 
recommendations for improving sustainability, in particular in the regulation of social and 
environmental impacts of the lifecycle of mobile phones. A report on the results of research in 
phase 3 and 4 will be published in the fall of 2019. 

In Section 2 we describe the methodology used for the identification of hotspots in the 
lifecycle of mobile phones. A Hotspots Analysis is a qualitative approach to rapidly identify 
and prioritize social and environmental impacts on sustainability in a product lifecycle. We 
describe the process of identifying risks in the mobile phone lifecycle and we provide the 
descriptions of the impact categories used in this Sustainability Hot Spots Analysis of the 
mobile phone lifecycle. 

In this study, we define an impact as a verified breach of defined planetary boundaries or 
social dimensions by an activity in the mobile phone lifecycle. The Planetary Boundaries 
framework [1], [2], and the twelve dimensions of the Social Foundation [3], provide the 
benchmarks against which we formulate our impact categories. In Annex 1 we provide the 
descriptions of the boundaries and dimensions as well as their indicators. In Section 3 we 
associate the planetary boundaries and social dimensions with the qualitative impact 
categories used in our analysis. In Section 4 we present the hotspots in the Mobile Phone 
Lifecycle, focusing on siox lifecycle phases: Design, Resource Extraction, Manufacturing, 
Transportation, Use, and End of Life. Annex 3 provides the particular values (0 to 3) for each 
impact and lifecycle phase. Annex 4 provides the bibliography of the articles, book chapters, 
and reports that formed the data for the analysis.  

  

                                                        
2 First Stakeholder Report: Work Package Four – Mobile Phone Lifecyle, November 30, 2017 
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2. Methodology  
The research undertaken focuses on the steps involved in making mobile phones within their 
real-life contexts. The objective is to produce a comprehensive understanding of 
environmental and social sustainability in the mobile phone lifecycle.  

The research is guided by a 
desire to understand the factors 
driving environmental and 
social unsustainability in 
global product lifecycles. Our 
working definition of 
sustainability and 
unsustainability is framed by 
natural and social science 
research into “a safe and just 
space for humanity” [4]. 
Current data indicate that 
human activity is the main 
cause for the present 
overshoots of the natural 
boundaries imposed by our 
planet in at least four key 

areas: climate change, 
biodiversity, land conversion 

and nitrogen and phosphate loading. In addition, we are failing to meet the minimum social 
foundations - such as access to food, water and social equity - necessary for safe and just 
human development. Our definition assumes that sustainable human activity lies between in 
between the planetary boundaries and social foundation in what Raworth has called a 
“environmentally safe and socially just space in which humanity can thrive.” 

Case Selection 
An overarching objective of the research under WP4 of the SMART project is concerned to 
locate the lifecycle of electronics in this larger context of sustainability. To operationalise this 
concern, we opted to focus on the mobile phone lifecycle as a case study into one product 
lifecycle out of many within the field of electronics [5], [6]. 
 
We located our research into the mobile phone lifecycle within the overall definition of 
sustainability outlined above, and began by asking three questions:  
 

o What are the phases/stages and components of the mobile phone lifecycle (LC) in 
general?  
 

o What are the environmental risks in the mobile phone LC?  
 

 
o What are the social risks in the mobile phone LC?  

Figure 1. Planetary Boundaries and Social Foundation 
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These questions framed our first phase research in the mobile phone lifecycle. As anticipated, 
it rapidly became clear that it is often difficult to speak of a mobile phone lifecycle in the 
singular. The variety of companies involved in mobile phone production, each with their own 
value chain and with a range of suppliers stretched along global supply chains, confronts the 
researcher with a problem of complexity and diversity. In other words, there is not one mobile 
phone lifecycle but several. We took this on as a research challenge and decided to test the 
notion that a mobile phone lifecycle could be described in a general fashion but with enough 
specificity to allow for research into the regulatory ecology of sustainability (in the next phase 
of research).  

 

 

 

 

 

 

 

To this end, we map the hotspots across the lifecycle of what we describe as a composite 
smart phone (CP), which draws on the extensive literature review conducted in the phase one 
development of the Risk Catalogue. In addition, we map the hotspots in the lifecycle of the 
Fairphone 2, developed by Fairphone B.V., a social entrepreneur in the Netherlands. 
Fairphone functions as our best practice company, with the Fairphone 2 has our best practice 
case. We selected the Fairphone 2, because the main goal of Fairphone is not to sell as many 
mobile phones as possible, but to create a fair and sustainable LC. The Fairphone 2 is the first 
modular and repair-centric mobile phone on the European market. The Fairphone 2 is ranked 
as the most repairable mobile phone [7]. In 2016, Bas van Abel, co-founder and then CEO of 
Fairphone B.V., won the prestigious German Environmental Award, of the German Federal 
Environmental Foundation, for being “a pioneer for more resource efficiency in the 
smartphone industry” [8]. In 2017, Greenpeace and The Good Shopping Guide gave 
Fairphone the best grade of all mobile phone producers [9] (see Figure 2).3 

Cataloguing Risks and Impacts 
We sought answers to the questions outlined above through a systematic literature review and 
document analysis, as well as stakeholder consultation.  For the purposes of understanding the 
social and environmental impacts of mobile phones, the lifecycle of a mobile phone is 
commonly conceived of as having six phases: design, resource extraction, manufacturing, 
transport, use, and end of life.   

                                                        
3 There are several organisations that rank ethical products, often using different sets of criteria and different data. These two 
examples are provided to illustrate the ranking of Fairphone amongst its competitors. 

Figure 2. Ranking of mobile phones 
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In order to get an overview of the social and environmental impacts in the mobile phone 
lifecycle, a catalogue of risks and impacts was developed. The literature review covered more 
than 400 academic articles and reports published by international organisations (research 
institutes, non-governmental organisations, labour unions, etc.): 304 resources were located in 
a systematic review and additional resources were identified after the first review was 
finished. In our review, we included articles and reports focusing on mobile phones as well as 
articles and reports related to the electronics industry in general or to particular activities 
related to the mobile phone LC. Phase 1 of the research generated a comprehensive risk 
catalogue across all phases of the LC of mobile phones (see Annex 2). 
  
In the systematic review, scientific and non-scientific (grey) literature was explored on the 
basis of a set of search strings. The result was a body of 304 resources, which were 
systematically coded on the lifecycle phase in which the risk took place, the country in which 
the risk took place, and the type of risk (risk to what and risk to whom). The result was an 
extensive list with risks, which we formulated as a Risk Catalogue. The Risk Catalogue is 
available online and, once finalised, will become a comprehensive and interactive resource for 
the general public (see Annex 2 and online at kumu.io/majava/). The risk map was presented 
and discussed during the first stakeholder meeting in Amsterdam, March 2017 and through a 
second round of consultations in Warsaw, in October 2017. 

The Risk Catalogue was intended to be comprehensive and does not exclude any risks or 
attempt to rank them in any way. This makes the risk catalogue a vital reference point for the 
overall challenges to sustainability presented by mobile phones. However, and as anticipated, 
the comprehensiveness of the risk catalogue also makes it unwieldly for the purposes of 
prioritising interventions to improve sustainability in the mobile phone lifecycle. We grouped 
some of the risks and impacts, in particular the long lists of hazardous materials mentioned in 
the literature. Still, the range of risks portrayed by the catalogue is too wide for the purposes 
of more focused research into regulation in the subsequent phases of Work Package 4, namely 
regulatory research and the identification of reform proposals. 

From risks to impact categories 
A key challenge in this stage of the research has been to translate the identified risks and 
impacts in the Risk Catalogue in ways that correlate to the Planetary Boundaries framework 
and the Social Foundation, which contains the benchmarks of sustainability used in the 
SMART project. It should be emphasised that both the planetary boundaries and the social 
dimensions have been defined with respect to international consensus definitions and 
indicators (see Annex 1. Description of Planetary Boundaries and Social Foundation). 
However, it was not always clear how a particular impact or risk, which arose the life cycle of 
a mobile phone, might translate into a salient impact or risk to a planetary boundary or social 
dimension. For example, we found several health risks related to working with hazardous 
materials in the mining, manufacturing, and informal recycling phases of the mobile phone 
lifecycle. However, the literature discussed particular diseases or chemicals and did not relate 
these to Planetary Boundaries or Social Foundation. 

To achieve the translation of the identified impacts and risks into planetary boundaries and 
social dimensions, we adopted some of the impact categories used in Life Cycle Assessments 
(LCAs) of mobile phones [10]–[27]. We mapped the risks catalogued from the literature 
review against the impact categories commonly used in these LCAs. In doing so, we made a 
priority of impacts, that is, those risks to people and the planet which had occurred and for 
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which the impact was documented in the literature. In this way, our Risk Catalogue was 
translated into a set of Impact Categories. The result was that a large number of risks were 
combined into slightly smaller number of impacts. In addition, the categorisation of these 
impacts was more compatible with Planetary Boundaries framework and the Social 
Foundation. For example, the health risks relating to working with hazardous materials in 
mining, manufacturing and informal recycling were re-organised as standard impact 
categories, such as the Hazardous materials/Human toxicity impact category and the Reduced 
health/Reproductive health hazards impact category. These are impacts which breach the 
planetary boundary called Introduction of Novel Entities as well as the social boundary called 
Health (see Annex 3). 
In this way, were able to draw on literatures from a number of disciplines, deploying a diverse 
range of methods and definitions, and correlate the evidence of verified impacts described in 
this literature to our overall framework for sustainability. Drawing on the LCA literature also 
enabled us to ensure coherence with standard LCAs, which form an important source of data 
for sustainability in electronics production, and to avoid contributing to the proliferation of 
standards, which is a constant risk in the field of sustainability.  

From impact categories to hotspots 
In Phase 2 of the research, we asked the question: What are the sustainability hotspots in the 
mobile phone lifecycle? For the Hotspots Analysis, we drew on the work of UNEP: “Hotspots 
Analysis: An overarching methodological framework and guidance for product and sector 
level application” [28]. UNEP defines a Hotspots Analysis as: 

The rapid assimilation and analysis of a range of information sources, including life cycle 
based studies, market, and scientific research, expert opinion and stakeholder concerns. The 
outputs from this analysis can then be used to identify and prioritise potential actions around 
the most significant economic, environmental and social sustainability impacts or benefits 
associated with a specific country, city, industry sector, organization, product portfolio, 
product category or individual product or service. Hotspots analysis is often used as a pre-
cursor to developing more detailed or granular sustainability information.  

The UNEP Hotspots Analysis defines a hotspot as “a life cycle stage, process or elementary 
flow4, which accounts for a significant proportion of the impact of the functional unit”.  In the 
SMART project proposal from 2015, we defined a hotspot “as a significant risk of a breach of 
social or planetary boundaries in a product’s life cycle, e.g. resource use that results in peak 
climate gas emissions or an activity that violates access to clean water”. Based on the research 
conducted so far in this Work Package, we propose to integrate these two definitions. We 
propose the following definition of a hotspot in the Hotspots Analysis of Mobile Phones in 
the SMART project: 

A life cycle stage, process or elementary flow, that accounts for a significant proportion of the 
mobile phone’s impact on a planetary boundary or a dimension of the social foundation. 

The UNEP framework presents several particular methodologies. We have selected the 
“Sustainability Hot Spots Analysis” (SHSA) by the Wuppertal Institute for Climate, 
Environment and Energy [29]. This is qualitative approach, combining social and 

                                                        
4 Material or energy entering the system being studied that has been drawn from the environment without previous human 
transformation, or material or energy leaving the system being studied that is released into the environment without 
subsequent human transformation 
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environmental impacts, and with a clear approach to weighing impacts in order to identify 
hotspots [29]–[32].  

As far as we are aware, this is the first time that a Hotspots Analysis is being applied to the 
lifecycle of the mobile phone. This is not surprising, as Hotspots Analysis is a relatively new 
approach. In addition, the mobile phone lifecycle is a complex lifecycle and there is no 
literature available that considers the full scope of potential impacts on social and 
environmental sustainability in the complete mobile phone lifecycle. On the other hand, the 
Hotspots Analysis methodology invites research into complex lifecycles. Its systematic 
approach enables an understanding of the connections between similar impacts in different 
lifecycles as well as offers a simple process to weigh the different impacts. 

The SHSA presented here builds forth on the outcome of Phase 1, namely the Risk Catalogue, 
in which risks to planetary boundaries and social dimensions were mapped corresponding to 
the phases in a generic mobile phone LC. To identify the priorities for research, we conducted 
a weighting of the various impacts and risks. This weighting involved ranking the identified 
impacts, first in relation to their prevalence or likelihood in relation to a particular phase, and, 
second, in relation to their salience of that phase to the sustainability of the mobile phone 
lifecycle overall. The weighting was based on the data and analysis found in the same 
database of literature from which the risk was identified. The identification of the hotspots in 
the mobile lifecycle of two mobile phones is explained in Section 4 and summarized in Annex 
3.  

Our Sustainability Hot Spots Analysis consists of five steps: 

1. Identification of the impact categories, with each impact understood as a verified 
breach of a defined Planetary Boundary or Social Dimension. 
 

2. Specification of the significance (likelihood) of each impact as low (1), medium (2), 
and high (3) or no data (0). Significance is based on a qualitative analysis (weighting) 
of likelihood that a particular impact will occur in a particular phase. The data used for 
this analysis was gathered in Step 1 and Phase 1.  
 

3. Ranking of the salience of the phase for the overall sustainability of the lifecycle. 
The phase is ranked (weighted) as either none (0), low (1), medium (2), or high (3) 
based on the number of impacts in a particular phase. This determination draws on the 
data gathered in the Risk catalogue and Step 1 and 2 above. The salience of the phase 
is therefore based on its importance as a source of environment and social 
unsustainability. The purpose of this ranking is to identify the phase for particular 
attention by the analyst.  
 

4. Identification of the sustainability hotspots takes place by multiplying the 
significance of an impact with the salience of the phase with which it is associated. 
We achieve this identification by multiplying the scores of step 2 and 3. 
 

5. Stakeholder evaluation and verification of hotspots in stakeholder consultations 
(meetings, key informant interviews and online consultation) The hotspots were 
discussed in consultations with stakeholders in November 2017. In addition, 
stakeholders were asked to provide input in the form of selecting particular hotspots, 
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which they felt were the most pressing for the purposes of sustainability and 
innovation in their own sector in order to assist in the prioritisation of further research 
into regulating sustainability in the mobile phone life cycle. 

Triangulation 
In order to increase the validity of the qualitative approach of the SHSA, we used several 
methods for data collection: literature review, stakeholder consultations, LCAs, and a case 
study (Fairphone). These were then used to specify significance of an impact in Step 2 and 
salience of a phase in Step 3. These values are thus based on subjective, but informed 
analysis. We determined hotspots by multiplying the value in Step 2 (the significance of a 
particular impact), and the value in Step 3 (the salience of a lifecycle phase). The 
multiplication is based on the recognition that some lifecycle phases have greater salience for 
the sustainability of the overall lifecycle, a determined by the number of impacts in a 
particular phase. For example, the Resource Extraction phase is weighted with a 3 because 
there are a large number of impacts within that phase. One result of this method is that an 
impact can be a hotspot in one lifecycle phase, but not in another. For example, for example, 
CO2 emissions in the Transportation phase of the mobile phone lifecycle are significant (= 3). 
However, the Transportation lifecycle phase has the value 1, because the impacts in the 
Transport phase are few. In addition, CO2 impacts constitute only one-tenth to one-fourth of 
the CO2 emissions in the Manufacturing phase [33]–[36]. Thus, while CO2 impacts are 
significant within the Transportation phase, they are not as significant for the overall lifecycle 
as the same impacts originating in other phases.  
 

Table 1 Hotspots analysis of the CO2 emissions in Manufacturing and Transportation phase.  

Impact  Value Phase Value Non-hotspot < 6 Hotspot ≥ 6 
CO2 emissions  3 Manufacturing  3  9 
CO2 emissions  3 Transport 1 3  
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3. Impact Categories  
In order to identify the hotspots in the mobile phone lifecycle, we need to be in a position to 
weigh the identified impacts. To do that, we have first translated the risks collated in the Risk 
Catalogue into a set of Impact Categories. The substance of these is described below, with 
links to definitions. From the wide range of risks identified across the mobile phone lifecycle 
(Annex 2), we were able to identify one impact category corresponding to each of the nine 
planetary boundaries and 25 impact categories corresponding to 11 of the twelve social 
dimensions. The impact categories are described in relation to the planetary boundaries and 
social dimensions to which they correspond, as well as to the phase in which they have a 
major impact. 
 

Planetary boundaries5 
Impact categories 

Description   
Impact categories as found in phases of mobile phone lifecycle 

Ocean acidification 
Acidification 

 
Decrease of the ocean’s pH-level as a result of uptake of CO2. 
Acidification of water bodies is the result of mining and 
processing of, for example, gold, fossil fuels, and aluminium 
(Resource Extraction). Acidification threatens aquatic life 
(Ecotoxicity) and drinking water (Drinking water pollution) 

Change in biosphere integrity 
Biodiversity loss 

 
Biodiversity loss, the drastic reduction or even extinction of 
certain species in a habitat.  Both artisanal and industrial mining 
have contributed to the destruction of local habitats (see also 
Deforestation), resulting in a decline and even extinction of 
species in particular countries (Resource Extraction).  

Climate change 
CO2 emissions 

 
The emission of carbon dioxide as a result of human activity, such 
as the burning of fossil fuels and deforestation. CO2 emissions can 
be found throughout the whole mobile phone lifecycle, but are 
especially relevant in the Manufacturing, Transport, and Use 
phases. 

Land-system change 
Deforestation 

 
Removal of a forest or stand of trees, converting land-use to non-
forest. This is especially the case in forested areas with mineral 
deposits (Resource Extraction) (see also Land use change). 

Biogeochemical flows 
Eutrophication 

 
Increase of nutrients in a body of water, causing structural 
changes to an ecosystem. Eutrophication can be the result of 
mining activities (god, copper, cobalt, etc.) and run-offs from 
mining activities, such as acid mine drainage (Resource 
Extraction). Eutrophication is also found in bodies of water near 
sites of electronics manufacturing as a result of emissions of 
waste water containing toxic materials (Manufacturing), as well 

                                                        
5 The non-negotiable planetary preconditions that humanity needs to respect in order to avoid the risk of 
deleterious or even catastrophic environmental change. For descriptions of each of the Planetary Boundaries, see 
Annex 1. 
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as in bodies of water near sites where electronics are 
disassembled (End of life). 

Fresh water use 
Excessive water use 

 
Industrial water use resulting in environmental degradation and 
decreasing water availability for humans and wildlife. Excessive 
water use is found in mining (Resource Extraction) and in the 
production of mobile phones (Manufacturing). 

Introduction of Novel Entities 
Hazardous 
materials/Ecotoxicity 

 
Emissions of toxic and long-lived substances such as synthetic 
organic pollutants, heavy metal compounds and radioactive 
materials affecting ecosystems. Hazardous materials are both used 
and produced in the mobile phone lifecycle. For example, in 
artisanal mining, mercury and cyanide are used to process gold 
from ore and uranium and cadmium are by-products of cobalt 
mining and cobalt processing (Resource Extraction). 

Stratospheric ozone depletion 
Ozone depletion 

 
Decline in the planet’s ozone layer as a result of man-made 
chemicals. In the mobile phone LC we find halogenated organic 
emissions, as an effect of the manufacturing of aluminium (the 
average mobile phone consists of 14% aluminium) and the use of 
flame-retardants (Manufacturing). 

Atmospheric aerosol loading 
Particulate matter 

 
Solid and liquid particles in the air, organic and inorganic, mostly 
hazardous. Mining and smelting operations produce a large 
amount of particulate matter, containing a wide variety of 
materials, such as iron, aluminium, mercury, etc. (Resource 
Extraction). Particulate matter emissions are also high in the 
Transport phase (diesel-related). The burning of electronic waste 
contributes to high emissions of foe example nitrogen oxides, 
sulphuric acid, chlorine, and volatile organic compounds (VOCs) 
(End of life). 

Social Dimensions6  
Impact categories 

Description 
Impact categories as found in the lifecycle of mobile phones 

Food 
Food chain pollution 
 
 
 
 
 
 
 
 
 
Land-use change 

 
Food, as a social dimension, refers to the percentage of the 
population that is undernourished. In our study, this social 
dimension refers the pollution of the food chain with hazardous 
materials, resulting in contaminated food for human consumption. 
Food chain pollution undermines food security and results in 
reduced health. Food chain pollution is found in mining areas, 
where grazing lands and crops are contaminated with toxic 
elements released into air (Resource Extraction) and in areas 
where e-waste is disassembled (End of life). 
 
Land-use change undermines food security and can contribute to 
undernourishment. Land-use change is found in areas with 

                                                        
6 The minimum standards of living conditions and human rights below which people can be said to be living in 
deprivation.  For descriptions of each of the Social Dimensions, see Annex 1.  
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mineral deposits, where land used for growing food for the local 
community is converted in to mining (Resource Extraction). 
Two main changes are found: converting agricultural land-use to 
non-agriculture and deforestation, which affects the livelihoods of 
peoples depending on the forest for food. 

Income & Work 
Excessive overtime 
 
 
 
 
 
Forced labour 
 
 
 
 
 
 
 
Low wages 
 
 
 
 
 
 
 
 
 
 
 
 
 
Precarious work 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Overtime that has negative consequences for the workers is 
considered excessive. Excessive overtime is the result of low 
wages and/or production demands and is found among artisanal 
miners (Resource Extraction) and among workers in the 
electronics industry (manufacturing phase). 
 
The ILO defines forced labour as "all work or service, which is 
exacted from any person under the threat of a penalty and for 
which the person has not offered himself or herself voluntarily." 
In the mobile phone LC, we find forced labour in the mining 
sector, in particular in areas of conflict (Conflict, Resource 
Extraction). In the electronics industry, forced labour is the result 
of human trafficking and migration.  
 
Wage labour is one of the principle means for people to escape 
poverty. The international poverty limit is 3.10 dollars a day, 
however it is common to define low wages in light of a living 
wage in a particular context. Wage levels are dependent upon 
factors such as the demand for labour in a particular labour 
market, informality and the existence or health of systems of 
industrial relations (e.g. of collective bargaining).  An abundant 
supply of workers tends to lower wage levels: artisanal miners (in 
Resource Extraction) or factory workers (in the Manufacturing 
phase) tend to be particularly vulnerable to downward pressure on 
wage levels. Even in tight labour markets marginalisation may 
also affect wage disparities, for example for women versus men, 
or for migrant labourers.  
 
Work is deemed precarious when it subjects workers to unstable 
or dangerous with little social or trade union protections.  The 
term is often used in opposition to the goal of Decent Work and 
is associated with short-term contract work and outsourcing. 
Women, minorities and migrant workers are much more likely to 
end up in jobs characterised as precarious and precarious work 
has been found among artisanal miners (in Resource Extraction), 
factory workers (in the Manufacturing phase) and workers 
involved in e-waste disposal (End of Life phase) tend to be 
particularly vulnerable to downward pressure on wage levels. 
Precariousness has several dimensions: temporal (low certainty 
over continuity of employment); organisational (lack of worker 
control over working conditions, e.g. shifts, work intensity, pay, 
health and safety); economic (poor pay); social (few legal 
protections against e.g. unfair dismissal, discrimination) and 
social protection (e.g. health coverage, unemployment insurance). 
Informal work is work undertaken without contract or legal 
regulation. Informal workers may be organised but they often are 
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Non-union work  
 
 
 
 
 
 
 
 
 
Unsafe work 

not, leading to higher risks of non-payment of wages, compulsory 
overtime or extra shifts, lay-offs without notice or compensation, 
unsafe working conditions and the absence of social benefits such 
as pensions, sick pay and health insurance. Vulnerable workers 
such as women and migrants are often over-represented in the 
informal labour market. 
 
Workers who are unorganised face higher risks of poorly paid, 
precarious, informal and unsafe work. Opposition to workers 
organisations by employers is common. This opposition may 
violate basic rights at work, such as the freedom of association 
and the right to collective bargaining. Non-union work is found 
among artisanal miners (in Resource Extraction), factory 
workers (in the Manufacturing phase) and workers involved in 
e-waste disposal (End of Life phase).  
 
 
Work is deemed unsafe when it exposes workers to unprotected 
risks to life or physical or emotional health. IN many countries, 
there is a generally accepted right of workers to refuse unsafe 
work, but the pressures on workers to work in risky situations 
remains. Occupational health and safety laws are common in 
many jurisdictions and often require companies to establish 
internal health and safety programmes. Unsafe work has been 
found in the workplaces of artisanal miners (in Resource 
Extraction), factory workers (in the Manufacturing phase) and 
workers involved in e-waste disposal (End of Life phase). 

Water & Sanitation 
Drinking water pollution/lack of 
access 
 
 
 
 
Poor sanitation 

 
Access to clean drinking water is a human right. Pollution of 
drinking water as a result of chemical pollution is in particular 
found in and around mining sites (Resource Extraction), near 
electronic industries (Manufacturing), and near informal 
electronic waste disassembling sites (End of Life). 
 
Access to sanitation is part of the same human right as the right 
to clean drinking water. Poor sanitation is in particular found in 
and around mining sites (Resource Extraction) and informal 
electronic waste disassembling sites (End of Life). 

Health 
Reduced health/Reproductive 
hazards 
 
 
 
Hazardous materials/Human 
toxicity 
 
 
 
 
 

 
Reproductive hazards are generally associated with workplace 
health and safety (Unsafe work), for example through the use of 
or exposure to hazardous materials (Resource Extraction; 
Manufacturing; End of Life; Hazardous materials).  
 
Emissions of toxic and long-lived substances such as synthetic 
organic pollutants, heavy metal compounds and radioactive 
materials affecting humans. Miners and communities working and 
living around mines and processing plants have a high risk of 
increased levels of concentrations of toxic materials in their 
blood. Many of these materials can result in acute or long-term 
health problems (Resource Extraction; Reduced health). 
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Lack of information about 
hazardous materials 

Workers in the electronics industry and communities living near 
these facilities have a high risk of increased levels of 
concentrations of toxic materials in their blood. Many of these 
materials can result in acute or long-term health problems 
(Manufacturing; Reduced health). Workers in the electronic 
waste, both informal and industrial, and communities living near 
these facilities, have a high risk of increased levels of 
concentrations of toxic materials in their blood. Many of these 
materials can result in acute or long-term health problems (End of 
Life; Reduced health).  
 
Working in mines, electronics industries, and electronic waste 
recycling often lack information about hazardous materials and 
are not able to take the necessary precautions to protect 
themselves from harm or they are not aware of the connection 
between their work and their health situation (Resource 
Extraction; Manufacturing; End of Life). 

Education 
Child labour 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Low literacy 

 
Many children work (e.g. in the home or on family farms). 
Whether or not particular forms of “work” can be called “child 
labour” depends on the child’s age, the type and hours of work 
performed, the conditions under which it is performed and may 
vary from country to country, as well as among sectors within 
countries. The term “child labour” is often defined as work that 
deprives children of their childhood, their potential and their 
dignity, and that is harmful to physical and mental development. 
It refers to work that: is mentally, physically, socially or morally 
dangerous and harmful to children; and interferes with their 
schooling by: depriving them of the opportunity to attend school; 
obliging them to leave school prematurely; or requiring them to 
attempt to combine school attendance with excessively long and 
heavy work. In its most extreme forms (worst forms), child labour 
involves children being enslaved, separated from their families, 
exposed to serious hazards and illnesses and/or left to fend for 
themselves on the streets of large cities – often at a very early age. 
Child labour has been found in connection with the production of 
minerals, in factory labour and in the informal work involved in 
disposal of e-waste (Resource Extraction; Manufacturing; End 
of Life). 
 
Literacy represents a potential for further intellectual growth and 
contribution to economic-socio-cultural development of society.  
Literacy and illiteracy are usually measured as a proportion of the 
total population of a country, often broken down by age group 
and gender.  

Energy 
Lack of clean energy 

 
Access to electricity is a critical issue in all aspects of sustainable 
development. Data is scarce but the World Bank has launched 
efforts to map access. The cleanliness of energy is covered by the 
climate gas emissions categories above.  
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Gender equality 
Lack of equal opportunities 

 
Equality of opportunity means “women and men, and girls and 
boys, enjoy the same rights, resources, opportunities and 
protections. It does not require that girls and boys, or women and 
men, be the same, or that they be treated exactly alike” 
(UNICEF). Equality of opportunity is based on the right not to be 
discriminated against on the basis of gender, race, religion or 
national origin established as a human right by the Article 2 of the 
UDHR.   

Social equity 
Discrimination 
 

 
Social equity is a general concept, which applies notions of justice 
and fairness in social policy. Migrant workers and their families 
are often discriminated against (Manufacturing; Precarious 
work). 

Voice 
Forced relocation 
 
 
 
 
 
Lack of representation 

 
Forced relocation involves the movement of people from their 
home. It may be the result of government policy, natural disaster 
of conflict. We found cases of forced relocation as a result of 
mining companies starting explorations and mining activities 
(Resource Extraction). 
 
In cases of forced relocation, the local communities were not part 
of the decision-making process or the decision was supported by 
local people not representative of the local community (Resource 
Extraction). 

Peace & Justice 
Conflict 
 
 
 
 
 
 
Corruption 
 
 
 
 
 
 
 
Illicit trade 
 
 
 
 
Sexual violence 

 
An armed conflict is a violent contestation between two or more 
organisations (often political organisations such as governments, 
insurgents), and which results in a significant damage number of 
casualties over a defined time period (e.g. 25 deaths per year). 
Armed conflict has been associated with the production of 
minerals (Resource Extraction).  
 
Corruption is the abuse of entrusted power for private gain. It 
can be classified as grand, petty and political, depending on the 
amounts of money lost and the sector where it occurs.  Corruption 
is usually defined in relation to the bribing of public authorities 
but can also be found in private transactions and has been 
associated with the shipments of minerals (Resource Extraction) 
and monitoring of working conditions (Manufacturing).  
 
Illicit trade is the conducting of transactions across borders in 
violence of national or international law. Illicit trade has been 
detected in the smuggling of minerals (Resource Extraction) and 
commodities (Manufacturing; End of Life).  
 
Sexual exploitation or abuse (SEA) is the actual or threatened 
physical intrusion of a sexual nature, whether by force or under 
unequal or coercive conditions or any actual or attempted abuse 
of a position of vulnerability, differential power, or trust, for 
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sexual purposes, including, but not limited to, threatening or 
profiting monetarily, socially or politically from the sexual 
exploitation of another. Sexual exploitation or abuse involving 
woman underage girls has been found in association with mining 
(Resource Extraction) 

Housing 
Living in slums 

 
Housing is about urban population living in slum housing in 
developing countries. Large slums have been found around 
informal electronic waste sites, which often lack proper 
sanitation, access to drinking water (End of Life; Water & 
Sanitation) 

Networks n/a 
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4. Hotspots Analysis 
 

 
 
In this section, we present the analysis of the hotspots in the lifecycle of two mobile phones. 
The first one is the analysis of the composite mobile phone (CP), based on an extensive 
literature review and stakeholder consultations. In addition, we will present a hotspot analysis 
of the Fairphone 2 (FP2), based on a review of the literature and initial interviews and field 
work with Fairphone.  
 
In environmental Life Cycle Assessments (LCA) of mobile phones, we find a variety of ways 
to identify the phases in the mobile phone lifecycle. Some use the ETSI Standard, which 
consists of four high-level phases [37]: Raw Materials Acquisition, Production, Use, and End 
of Life. Proske et al., evaluating the lifecycle of the Fairphone 2, use also four high-level 
phases [34]: Raw Materials and Manufacturing,  Use, End of Life, and Transport. Also 
Suckling & Lee [38] use this four-phase lifecycle. Others use five phases: Samsung [39], [40] 
uses Pre-Manufacturing, Manufacturing, Distribution, Use, Disposal; Möberg et al. [35] use 
Materials, Production, Use, Transportation, End of Life.  
 
We identified six main phases in the lifecycle of mobile phones: Design, Resource Extraction, 
Manufacturing, Transportation, Use, and End of Life. Design is added as a lifecycle phase to 
make its central role in the sustainability visible [41], [42]. This is also recognised by the 
European Commission, in particular through the European Union’s Ecodesign Directive, 
which sets EU-wide rules for the environmental performance of products [43]. 
 
Design and Transportation distinguish themselves from the other phases. They are not so 
much phases as well as processes that take place in or affect the other lifecycle phases. For the 
purpose of clarity and consistency we will use the same analysis for Design and 
Transportation as for the other four phases.  

Photo credit: SMART 
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Design 
Design is the lifecycle phase in which important decisions are made concerning the 
sustainability of a mobile phone. Several reports maintain that the design phase determines 
80% of the environmental impact of a product [44], [45]. This number is based on research 
that shows that 70-80% of the features and costs are established in the design phase [46], [47].  

Choices are made in terms of materials, size, weight, but also about costs and ease of repair, 
recycling or replacement of components, such as the battery. These choices, early in the 
lifecycle, affect the social and environmental sustainability in subsequent phases, such as the 
health and safety of the people mining and processing the materials and the workers 
manufacturing the components of the mobile phone.  
These choices will also affect the longevity of the mobile phone as well as the possibility to 
repair the mobile phone to extend its life. For example, a phone designed for reparability is 
modular, which affects its thickness and weight. A thin phone often uses glue to keep things 
together, which makes it difficult to open the phone or makes the replacement of a battery by 
the user impossible.  

The design of a mobile phone has significance for sustainability in later phases of the mobile 
phone lifecycle. Several of the hotspots found in the mobile phone lifecycle can be addressed 
through design. 
 

 

Photo credit: iFixit.com 

Design Design 
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Hotspots in the Design phase: 

Composite Phone 
Despite the importance of the design phase for the overall sustainability of mobile phones, the 
literature review found no reports of environmental or social impacts particular to the design 
phase of the CP. This is to be expected, as the effects of decisions in the design phase are 
expressed in impacts in other phases. For this reason, we did not identify any hotspots in the 
CP design phase. 

Literature and research identifying the impacts in other phases in the mobile phone lifecycle 
point to some of the direct connections with the design of a mobile phone. For example, the 
risk of exploding batteries in the Use phase and the adverse effects of non-removable batteries 
in the End of Life phase. During fieldwork in Ghana on the repair and recycling of mobile 
phones, we noted that several of the latest models of known brands use glue, which makes it 
much more difficult to repair the mobile phone and/or to replace the battery.  

Fairphone 2 
Despite the importance of the design phase for the overall sustainability of mobile phones, the 
literature review found no reports of environmental or social risks particular to the design 
phase of the FP2. This is to be expected, as the effects of decisions in the design phase are 
expressed in risks in other phases. For this reason, we did not identify any hotspots in the FP2 
design phase. 

The Fairphone 2 is designed for repair and was the only mobile phone with a 10 out of 10 in 
the iFixit Reparability ranking [48]. Repairability can extend the lifespan of the FP2 to 5 
years. It has a modular design, with each of the components clearly marked (identified for 
repair) and which can be taken out and replaced with the use of a regular screwdriver. The 
phone itself can be opened without the use of tools. Spare parts are available via the 
Fairphone website. 

 

     
Figure 3. The top 10 mobile phones on iFixit Repairability ranking 
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Resource Extraction 
Resource Extraction is the phase covering activities resulting in materials that will be used in 
the manufacturing phase, such as the extraction and processing of oil to make plastics, the 
mining and processing of cobalt and lithium to make materials for the battery, and the mining 
and processing of tungsten to make the mobile phone vibrate. Mobile phones can contain as 
many as 62 different metals, including 16 of the 17 rare earth metals (see Figure 3). The most 
used materials in a smartphone are silicon (25%), plastic (23%), iron (20%), aluminium 
(14%), lead (6.3%), zinc (2.2%), tin (1%), nickel 0.85%) and barium (0.03%) [49]. 
 
The most known social impact in this phase is conflict and associated illicit trade. Some of the 
minerals mined for mobile phones and other electronics, gold, tin, tantalum, and tungsten, are 
considered conflict minerals, because their extraction is associated with armed groups that 
control the mining and trade of the minerals. International regulation in the USA and the EU 
restricts the use of conflict minerals. There are several international initiatives focusing on 
improving the supply chain of minerals, such as the Responsible Minerals Initiative, the 
Responsible Sourcing Network, and the Enough Project. 
 
 

Photo credit: SOMO 

Resource Extraction 
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Figure 4. Elements of a mobile phone | Image: Compoundchem  

Composite Phone 

A large part of the materials of the mobile phone are extracted in artisanal and small-scale 
mining operations (ASM) in many African countries as well as in countries in Asia and 
South-America. Both the industrial mining and ASM mining of minerals are associated with a 
variety of environmental and social impacts. Most impacts contribute to other impacts or have 
a knock-on effect on other impacts.  
 
Acidification of water bodies is the result of the mining, processing, and production of 
materials such as gold, plastics, and aluminium, e.g. [13], [50]. Impacts of mining on 
biodiversity (biodiversity loss) are found in several countries. Mineral mining, both ASM and 
industrial, takes often place in areas with a large diversity of species, resulting in the 
destruction of local ecosystems/habitats as a result of deforestation [51], [52]. This has 
resulted in the drastic reduction and even extinction of species, e.g., in countries such as 
Bolivia [53], the Central African region [54], DR Congo [52], Nigeria [55], Mozambique 
[56], and Ghana [57]. 
 
Eutrophication is mainly associated with run-offs from mining activities and acid mine 
drainage from abandoned mines, e.g., [58] Eutrophication contributes to the release of 
hazardous materials in air, soil, and water (ecotoxicity), e.g., [59] . In mining, the release of 
hazardous materials in the environment can be the result of particular mining activities, such 
as the use of mercury, cyanide, arsenic in gold mining [58], [60], or the result of the mining 
activity itself, e.g., uranium from cobalt mining [50]. Mining activities are also associated 
with excessive water use [61], the release of solid particles in the air (particulate matter), and 
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ozone depletion.  
 
The release of hazardous materials in soli, water, and air (also eutrophication and particulate 
matter) results in foodchain pollution and drinking water pollution, for example as a result 
from copper mining and processing activities (lead, cadmium, copper) [62], [63], artisanal 
cobalt mining in DR Congo [64][65], and gold mining in Ghana with arsenic and mercury as 
the primary contaminants [66]. Reduced health is the result of exposure to these and other 
contaminants, such as uranium (radiation), heavy metals dust inhalation in artisanal cobalt 
mining in DR Congo [64], general health problems as a result from contact with dust and 
fumes, due to poor ventilation, and pneumoconiosis [black lung] and particularly silicosis 
occur” [67]. The human toxicity of some of these hazardous materials is high, especially for 
miners. For example, chronic exposure to cobalt-containing dust can result in fatal lung 
disease, asthma, decreased pulmonary function [68]. Mercury is widely used by artisanal 
miners in at least 70 countries, with 13 to 15 million artisanal miners working worldwide who 
risk being directly exposed to mercury; many of them are women and children [69]. Miners 
and local communities often lack information about hazardous materials [70].  
 
The working conditions of workers in and around mines, especially in ASM, are characterized 
by excessive overtime, e.g., [50], precarious working conditions, e.g., [71], with some 
working in mines with an anti-union policies, e.g. [67]. Mining is associated with unsafe 
work, e.g., landslides, mine-collapses, and lack of protective gear [50], [64]. Sexual violence 
is also an issue, with under-aged girls living or working in mining areas as victims of sexual 
exploitation and abuse” [70], [72] [73]. In addition, child labour is also widespread in mining, 
e.g., in artisanal cobalt mining in DR Congo [64], [50] and in gold mining [74]. Child labour 
also affects the educational level of the population [70]. Research from Nigeria shows the low 
levels of education of workers in and around the mining areas, with 55.7% of men and 60% of 
women having no formal education [75]. The mining of minerals may also be associated with 
conflict through the exploitation of labour in ways already mentioned, for example forced 
labour, by state or non-state armed groups or the illegal taxation of mineral flows by groups 
in control of mines or transportation routes, often as part of illicit trade [76], [77]. 
Miners and their families often live in slums near mining areas. They lack proper sanitation, 
lack of clean energy, and access to clean drinking water. They earn low wages, which can 
create tension between the different groups of miners (artisanal, small-scale, and industrial) 
[50]. 
 
Hotspots Analysis of the Composite Phone in the Resource Extraction phase 
 
1. We found a large number of environmental and social impacts in the Resource Extraction 

phase. Several of these impacts are evaluated as highly significant, that is, a high 
likelihood that this impact will take place in this phase.  
 

2. We evaluated the Resource Extraction phase as having high salience, an highly important 
source for environmental and social unsustainability on the overall mobile phone life 
cycle.  

 
3. In the Resource Extraction phase of the Composite Phone, we found 9 environmental 

impacts and 25 social impacts. The combination of the significance of impacts and 
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salience of the Resource Extraction phase resulted in 7 environmental hotspots and 17 
social hotspots (hotspots in bold, see Table 2). Annex 3 gives an overview of the 
evaluation of impacts and lifecycle phases and the identification of hotspots. 
 

Table 2. Impacts and hotspots of the CP in the Resource Extraction phase 

Lifecycle phase Environmental impacts Social impacts 

Resource 
Extraction 

1. Acidification 
2. Biodiversity loss 
3. CO2 emissions 
4. Deforestation 
5. Eutrophication 
6. Excessive water use 
7. Hazardous 

materials/Ecotoxicity 
8. Ozone depletion 
9. Particulate matter 

10. Food chain pollution 
11. Land use change 
12. Excessive overtime 
13. Low wages 
14. Forced labour 
15. Precarious work 
16. Non union work 
17. Unsafe work 
18. Drinking water pollution/Lack of access to 

drinking water 
19. Poor sanitation 
20. Reduced health/Reproductive health hazards 
21. Hazardous materials/Human toxicity 
22. Lack of information about hazardous 

materials 
23. Child labour 
24. Low literacy 
25. Lack of clean energy 
26. Lack of equal opportunities 
27. Discrimination 
28. Forced relocation 
29. Lack of representation 
30. Conflict 
31. Corruption 
32. Illicit trade 
33. Sexual violence 
34. Living in slums 

 
Fairphone 2 

In the Resource Extraction phase of the Fairphone 2 we find the same impacts as the in 
Composite Phone, but Fairphone’s initiatives in the Resource Extraction phase have 
diminished some of the environmental and social impacts. In terms of conflict minerals, all 
four minerals are considered conflict-free:  

o Tantalum: In cooperation with the Solutions for Hope project 7 , Fairphone sources 
conflict-free tantalum from Katanga in DR Congo. Tantalum is extracted from the ore 
colombite-tantalite, also often referred to as coltan. 

 
o Tin: In cooperation with the Conflict-Free Tin Initiative (CFTI)8, Fairphone sources 

conflict-free tin from South Kivu in DR Congo 
 
o Tungsten: According to Fairphone, conflict-free tungsten is sourced from the New 

Bugarama Mining Company, is a semi-industrial mine located in the north of Rwanda. 

                                                        
7 Solutions for Hope: http://solutions-network.org/site-solutionsforhope/ 
8 Conflict-free Tin Initiative: http://solutions-network.org/site-cfti/ 
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The mine employs between 700 and 1200 local miners (varying on demand) and is an 
important source of income for the community. Compared to the artisanal tin and 
tantalum mines in the DRC, the semi-industrial tungsten mine in Rwanda provide clear 
improvements in working conditions, especially in terms of health and safety [78]. The 
tungsten is further refined at Bergman und Hütten A.G in Germany.9 
 

o Gold: Fairphone has a fully traceable gold supply chain (see Figure 4). Gold is sourced 
from Minera Sotrami S.A. (Sociedad de Trabajadores Mineros S.A.) in Peru. Minera 
Sotrami has 164 shareholders and employs 260 mineworkers as well as five engineers 
who manage the mine and processing plant. The gold mined here meets the Fairtrade 
Standard for Gold and Precious Metals [79], meaning that rigorous social, economic and 
environmental regulations are followed including child protection policies. In addition, 
the miners are guaranteed a Fairtrade Minimum Price and Premium that assists in 
sustainable development for the community. This way, the mine supports 500 families. 
 

 
Figure 5. Child labour in the gold supply chain [80] 

 
Fairphone mentions it is working on the sustainable sourcing of 10 materials used in the FP2, 
which they call their priority materials: Indium, Copper, Nickel, Gold, Gallium, Tantalum, 
Tin, Rare Earths, Cobalt, and Tungsten [81]. Cobalt, found in the FP2 lithium-ion batteries, is 
sources from mines in DR Congo. Fairphone is working with Huayou Cobalt, a cobalt refiner, 
to set-up a traceable supply chain from artisanal and small-scale mining communities. 
Fairphone will work directly with the communities to improve working conditions [82]. The 
copper in the Fairphone’s PCB is made with recycled copper [83].  
 
 
                                                        
9 Bergman und Htten: http://www.wolfram.at/ 
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Hotspots Analysis of the Fairphone 2 in the Resource Extraction phase 
 
1. We found a large number of environmental and social impacts in the Resource Extraction 

phase. Several of these impacts are evaluated as high significance: a high likelihood that 
this impact will take place in this phase.  
 

2. We evaluated the Resource Extraction phase as having high salience: a highly important 
source for environmental and social unsustainability on the mobile phone life cycle.  

 
3. In the Resource Extraction phase of the Fairphone 2, we found 9 environmental impacts 

and 24 social impacts. The combination of the significance of impacts and salience of the 
Resource Extraction phase resulted in 7 environmental hotspots and 11 social hotspots 
(hotspots in bold, see Table 3). Annex 3 gives an overview of the evaluation of impacts 
and lifecycle phases and the identification of hotspots. 

 
Table 3. Impacts and hotspots of the FP2 in the Resource Extraction phase 

Lifecycle phase Environmental impacts Social impacts 

Resource 
Extraction 

1. Acidification 
2. Biodiversity loss 
3. CO2 emissions 
4. Deforestation 
5. Eutrophication 
6. Excessive water use 
7. Hazardous 

materials/Ecotoxicity 
8. Ozone depletion 
9. Particulate matter 

10. Food chain pollution 
11. Land use change 
12. Excessive overtime 
13. Low wages 
14. Forced labour 
15. Precarious work 
16. Non union work 
17. Unsafe work 
18. Drinking water pollution/Lack of access to 

drinking water 
19. Poor sanitation 
20. Reduced health/Reproductive health hazards 
21. Hazardous materials/Human toxicity 
22. Lack of information about hazardous 

materials 
23. Child labour 
24. Low literacy 
25. Lack of clean energy 
26. Lack of equal opportunities 
27. Discrimination 
28. Forced relocation 
29. Lack of representation 
30. Corruption 
31. Illicit trade 
32. Sexual violence 
33. Living in slums 
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Manufacturing 
Manufacturing is the phase in which the different components of the mobile phone are 
produced and assembled in order to become a finished product. The main components of a 
mobile phone are the circuit board (PCB), battery, LCD screen, antenna, microphone, 
speaker, camera(s), and shell. Each of these large components consists of several smaller 
components.  
 
Manufacturing takes place in factories around the world, with the largest factory, in Shenzen, 
China, housing up to 450.000 workers. Labour costs form 2% of the factory selling price and 
about 0.5 % of the retail price [84]. 
Composite Phone 

The manufacturing of mobile phones and other electronics is an energy-intensive activity 
[85]. Coal-powered electricity plants produce the majority of electricity in China [86]. Several 
of the environmental impacts in this phase are related to this form of electricity: Acidification, 
CO2 emissions, and Particulate matter. CO2 emissions are considered the highest in this phase 
[36], [87]. This phase is also characterised by Excessive water use and Eutrophication. Water 
consumption (including ultrapure water) in the production of ICs and PCBs is very high, 
because of the many cleaning and rinsing processes. Eutrophication is the result of the use of 
Hazardous materials in production, resulting in toxic wastewater that is not always properly 
treated [16]. The use of Hazardous materials, such as flame-retardants and halogenated 
organic emissions as a result of production processes, contribute to Ozone depletion. All 
emissions contribute to air pollution in the form of Particulate matter. 

Photo credit: Fairphone 

Manufacturing 
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The use of Hazardous materials also results in high levels of Human toxicity, which can 
result in increased cancer risks, e.g., [88]. Workers are exposed to ionizing radiations, organic 
solvents, heavy metals like cadmium and lead, and to chemicals that damage reproductive 
organs, such as arsenic and phosphate. Female workers report Reproductive health disorders, 
such as spontaneous abortions [83] [84]. Workers are generally not informed about the names 
of the chemicals or the risks involved in their use [89], [90]. This Lack of information about 
hazardous materials contributes to Unsafe work [91] 

In terms of working conditions, this phase is characterised by Excessive overtime [89], [92], 
which is also the effect of the Low wages in this sector [84]–[89], Precarious work [96], [90], 
and No union work [98], [89]. 
Hotspots Analysis of the Composite Phone in the Manufacturing phase 
 
1. We found a large number of environmental and social impacts in the Manufacturing 

phase. Several of these impacts are evaluated as high significance: a high likelihood that 
this impact will take place in this phase.  
 

2. We evaluated the Manufacturing phase as having high salience: a highly important source 
for environmental and social unsustainability on the mobile phone life cycle.  

 
3. In the Manufacturing phase of the Composite Phone, we found 7 environmental impacts 

and 13 social impacts. The combination of the significance of impacts and salience of the 
Manufacturing phase resulted in 7 environmental hotspots and 8 social hotspots 
(hotspots in bold, see Table 4). Annex 3 gives an overview of the evaluation of impacts 
and lifecycle phases and the identification of hotspots. 

 
 
 

Table 4. Impacts and hotspots of the CP in the Manufacturing phase 

Lifecycle phase Environmental impacts Social impacts 

Manufacturing 1. Acidification 
2. CO2 emissions 
3. Eutrophication 
4. Excessive water use 
5. Hazardous 

materials/Ecotoxicity 
6. Ozone depletion 
7. Particulate matter 

8. Excessive overtime 
9. Low wages 
10. Forced labour 
11. Precarious work 
12. No union work 
13. Unsafe work 
14. Drinking water pollution/Lack of access 
15. Reduced health/Reproductive health 

hazards 
16. Hazardous materials/Human toxicity 
17. Lack of information about hazardous 

materials 
18. Child labour 
19. Lack of equal opportunities 
20. Discrimination 

 
Fairphone 2 

As mobile phone brands and models are quite similar, the Fairphone 2 has similar 
environmental impacts as well as similar social impacts in the Manufacturing phase. Almost 
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100 suppliers are involved in the manufacturing of the FP2. The Tier 1 supplier (assemblage) 
is Hi-P, based in Suzhou, China. Hi-P is supplier for other companies too. In contrast to some 
of the other mobile phone/electronics brands [99], Fairphone is transparent about its suppliers 
[100]. No detailed data was available about suppliers in the 2-5 Tier.10 Fairphone has a 
particular programme in place with ten of their suppliers, focussing on improving the some of 
the environmental and social impacts [100], [102]–[104]. 
 
We evaluated the environmental impact of the Fairphone 2 similar to that of the Composite 
Phone. In terms of CO2 emissions, 4.698 kWh energy is used per product at Hi-P, with all 
energy coming from the Chinese grid mix, which is largely coal [34]. About 12% of these 
emissions are the result of the parts that enable the modularity of the FP2. The modularity of 
the FP2 enables repairability, which can extend the lifespan of the FP2 from 3 to 5 years. This 
has the effect that the total lifecycle CO2 emissions are 30% less.  
 
In terms of Hazardous materials, such as lead, cadmium, chromium VI, PBDEs and PBBs, 
Fairphone reports that they do not surpass the thresholds set in the ROHS regulation (1000 
ppm - except for cadmium with 100 ppm). The Fairphone 2 materials also comply with the 
RoHS Directive requirements set for Bromine Flame Retardants (BFR)s. In addition, other 
flameretardants, such as HBCDD and TBBPA have not been detected when tested in specific 
components (PCBs, filters, connectors, resistors, etc.). The Fairphone 2 is Phthalates- and 
PVC-free and no benzene and n-Hexane are used in the production process. Its back covers, 
the plastic used for the modules, and the plastic used on the back of the screen, all contain 
50% post-consumer recycled polycarbonate. Energy use during the assembly process and the 
manufacturing of the PCBs are the main contributors to Ecotoxicity [34]. In terms of Human 
toxicity, the FP2 LCA mentions that human toxicity for the whole phase is 8.35 kg DCB-e 
[34, p. 41]. Concerning Ozone depletion, the Fairphone 2 is PVC and phthalates-free and 
halogenated flame retardants are not used at Hi-P, which reduces the ozone depletion 
potential. It is not clear if the Fairphone is free of materials that contribute to ozone depletion, 
nor if materials are used in the manufacturing process that contribute to ozone depletion.  
 
In terms of social sustainability, Fairphone has undertaken significant steps to prevent some 
of the social impacts found in other mobile phone lifecycles, such as Low wages, Unsafe 
work, and No union work. In terms of Excessive overtime, Hi-P makes data available for the 
whole Hi-P facility and includes data for the FP2 production line as well as those of other 
customers (see Figure 5) [105]. According to Fairphone, Excessive overtime and lack of rest 
days due to Fairphone production was found in week 26 and 27. Overtime was the result of 
delays caused by problems with incoming materials from other suppliers. Fairphone reports 
that they are working with Hi-P to avoid Excessive overtime in such situations in the future, 
among others by ensuring timely communication and coordination whenever production 
issues arise [105]. According to Fairphone, lack of overtime is also a challenge as overtime 
constitutes an important part of employees’ salary (overtime hours are paid at a higher rate 
than regular hours according to local law, which is 150% of the regular wage for overtime 
work during regular workdays, 200% for overtime work on rest days, and 300% if overtime 

                                                        
10 We also note that there is no legal obligation for manufacturers to supply full material declarations. The 
willingness of suppliers to provide this information is often low and small companies such as Fairphone have no 
means to enforce that [101]. 
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takes place on a holiday): workers may leave Hi-P when income is too low, creating a high 
employee turnover that costs resources (e.g. for hiring and training new employees) and can 
negatively affect production output and quality [102]. 

 
Figure 6. Working hours for whole factory11. 

Precarious work is a consistent impact in the electronics manufacturing sector. TAOS 
reported that in April 2016, 30% of the work force at Hi-P were agency workers, i.e., workers 
without a permanent contract with Hi-P. In line with the Chinese Ministry of Human 
Resources and Social Security, which went into effect in March 2016, Fairphone mentions it 
aims to limit the number of agency employees to 10% of the total workforce.12 Temporary 
employees are more vulnerable in terms of exercising their rights at the workplace, for 
example when it comes to representation of their interests. At Hi-P, these employees are not 
automatically part of the factory’s labour union and employee representation system. 
Fairphone reports that all temporary workers receive an invitation to join the Hi-P union 
during their job orientation [105]. 
 
Hotspots Analysis of the Fairphone 2 in the Manufacturing phase 
 
1. We found a large number of environmental and social impacts in the Manufacturing 

phase. Several of these impacts are evaluated as high significance: a high likelihood that 
this impact will take place in this phase.  
 

                                                        
11 The factory was closed for the holidays in week 6-7. 
12 China has not ratified Convention 87 on the Freedom of Association and Protection of the Right to Organise 
Convention and it has not ratified Convention 98 on the Right to Organise and Collective Bargaining 
Convention. 
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2. We evaluated the Manufacturing phase as having high salience: a highly important source 
for environmental and social unsustainability on the mobile phone life cycle.  

 
3. In the Manufacturing phase of the Fairphone 2, we found 7 environmental impacts and 6 

social impacts. The combination of the significance of impacts and salience of the 
Manufacturing phase resulted in 7 environmental hotspots and 2 social hotspots 
(hotspots in bold, see Table 5). Annex 3 gives an overview of the evaluation of impacts 
and lifecycle phases and the identification of hotspots. 
 

Table 5. Impacts and hotspots of the FP2 in the Manufacturing phase 

Lifecycle phase Environmental impacts Social impacts 

Manufacturing 1. Acidification 
2. CO2 emissions 
3. Eutrophication 
4. Excessive water use 
5. Hazardous 

materials/Ecotoxicity 
6. Ozone depletion 
7. Particulate matter 

8. Excessive overtime 
9. Low wages 
10. Precarious work 
11. No union work 
12. Drinking water pollution/Lack of access 
13. Hazardous materials/Human toxicity 
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Transportation 
Transport is shorthand for a variety of activities that take place during the entire lifecycle of 
the mobile phone, such as distribution and transportation of raw materials, components, and 
finished products; the packaging of the products being transported; and the logistics or 
organisation and implementation of it all.  
 
Composite Phone 

In this phase, the majority of impacts are related to energy use during the transportation of the 
materials, components, and the assembled mobile phones. The bulk of the transportation of 
mobile phones, from the site of manufacturing to the site of distribution, takes place via 
airfreight [33]. Local transportation involves other modes of transportation, mainly trucks. 
The five environmental impacts and the one social impact are the result of the use of fuel, 
which leads to increased levels of CO2 emissions, Acidification of oceans (CO2 - related), 
Eutrophication, Hazardous materials/Ecotoxicity/Human toxicity and Particulate matter 
(fuel-related, e.g., diesel) [35], [40]. 
 
Hotspots Analysis of the Composite Phone in the Transportation phase 
 
1. We found a small number of environmental and social impacts in the Transportation 

phase. Some of these impacts are evaluated as high significance: a high likelihood that 
this impact will take place in this phase. 
 

2. We evaluated this lifecycle phase as having low salience: this phase is of low importance 
for the environmental and social unsustainability on the mobile phone life cycle. 

Photo credit: Fairphone 
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3. In the Transportation phase of the Composite Phone, we found 5 environmental impacts 

and 1 social impact. The combination of the significance of impacts and salience of the 
Transportation phase resulted in 0 environmental hotspots and 0 social hotspots (see 
Table 6). Annex 3 gives an overview of the evaluation of impacts and lifecycle phases and 
the identification of hotspots. 

 
Table 6. Impacts of the CP in the Transportation phase 

Lifecycle phase Environmental impacts Social impacts 

Transportation 1. Acidification 
2. CO2 emissions 
3. Eutrophication 
4. Hazardous 

materials/Ecotoxicity 
5. Particulate matter 

6. Hazardous materials/Human toxicity 
 

 
Fairphone 2 

According to the FP2 LCA, the main modes of transportation of the FP2 are airfreight and 
truck [34]. Within China, the mobile phone, the battery, and the back cover are transported by 
truck. Also transportation from the distribution centre in the Netherlands to customers in 
Europe is by truck. The transportation from China to the Netherlands is by airfreight. 
 
Hotspots Analysis of the Fairphone 2 in the Transportation phase 
 
1. We found a small number of environmental and social impacts in the Transportation 

phase. Some of these impacts are evaluated as high significance: a high likelihood that 
this impact will take place in this phase. 
 

2. We evaluated the Transportation phase as having low salience: this phase is of low 
importance for the environmental and social unsustainability on the mobile phone life 
cycle. 

 
3. In the Transportation phase of the FP2, we found 5 environmental impacts and 1 social 

impact. The combination of the significance of impacts and salience of the Transportation 
phase resulted in 0 environmental hotspots and 0 social hotspots (see Table 7). Annex 3 
gives an overview of the evaluation of impacts and lifecycle phases and the identification 
of hotspots. 

 
Table 7. Impacts and hotspots of the FP2 in the Transportation phase 

Lifecycle phase Environmental impacts Social impacts 

Transportation 1. Acidification 
2. CO2 emissions 
3. Eutrophication 
4. Hazardous 

materials/Ecotoxicity 
5. Particulate matter 

6. Hazardous materials/Human toxicity 
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Use 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
Use refers to the phase in which the mobile phone is used for information and communication 
activities by a mobile phone user. It is estimated that there are 4.43 billion mobile phone users 
worldwide, that is 60% of the total population of our planet [106]. The widespread use of 
mobile phones for access to the Internet has resulted in a significant environmental risk in the 
form of CO2 emissions from the servers necessary to Internet use.  
 
With respect to social risks, the centrality of the mobile phone in our lives has generated a 
vast and expanding range of uses, which interact with equally diverse ecosystems of 
regulation. There are a range of actual or potential impacts of mobile phones on such issues as 
privacy, property rights, attention economics, surveillance, online harassment, and criminality 
of various sorts. It is also the case that access to mobile phones has generated significant 
benefits to people in the form of access to information about markets, health issues, housing, 
and political processes. The legal, market and social actors and processes involved in the 
regulation of mobile phone use extend well beyond the product life cycle of the phone as a 
product, to include mobile telephone service providers, internet service providers, state 
regulators, as well as a vast and growing number of consumers. In other words, the 
widespread use of mobile phones and the increasing centrality of the smart phone in many 
aspects of contemporary life make any study of mobile phone regulation an undertaking that 
would extend well beyond the lifecycle approach adopted by this project.   
 
Composite Phone 

In the Use phase we found one major impact category, namely CO2 emissions, as a result of 
charging the battery. If we include energy use as a result of the connections between the 
mobile phone and networks and servers, the CO2 emissions in this phase would be the same 

Photo credit: Pxhere.com 

Use 



     
  

39 

or higher as the CO2 emissions in the Resource Extraction phase and Manufacturing phase 
combined [107]. The CO2 emissions introduce other environmental and social impacts, 
similarly to the Transportation phase: Acidification of oceans (CO2 - related), Eutrophication, 
Hazardous materials/Ecotoxicity/Human toxicity and Particulate matter (coal-powered 
electricity plants). 
 
Hotspots Analysis of the Composite Phone in the Use phase 
 
1. We found a small number of environmental and social impacts in the Use phase. Some of 

these impacts are evaluated as high significance: a high likelihood that this impact will 
take place in this phase. 
 

2. We evaluated the Use phase as having low salience: this phase is of low importance for 
the environmental and social unsustainability on the mobile phone life cycle. 

 
3. In the Use phase of the Composite Phone, we found 5 environmental impacts and 1 social 

impacts. The combination of the significance of impacts and salience of the Use phase 
resulted in 0 environmental hotspots and 0 social hotspots (see Table 8). Annex 3 gives 
an overview of the evaluation of impacts and lifecycle phases and the identification of 
hotspots. 

 
 

Table 8. Impacts and hotspots of the CP in the Use phase 

Lifecycle phase Environmental impacts Social impacts 

Use Acidification 
CO2 emissions 
Eutrophication 
Hazardous materials/Ecotoxicity 
Particulate matter 

Hazardous materials/Human toxicity 
 

 
Fairphone 2 

The description of the Use phase of the FP2 is similar to that of the CP. In the Use phase we 
found one major impact category, namely CO2 emissions as a result of charging the battery. If 
we include energy use as a result of the connections between the mobile phone and networks 
and servers, the CO2 emissions in this phase would be the same or higher as the CO2 
emissions in the Resource Extraction phase and Manufacturing phase combined [107]. The 
CO2 emissions introduce other environmental and social impacts, similarly to the 
Transportation phase: Acidification of oceans (CO2 - related), Eutrophication, Hazardous 
materials/Ecotoxicity/Human toxicity and Particulate matter (coal-powered electricity plants). 
 
 
 
Hotspots Analysis of the Fairphone in the Use phase 
 
1. We found a small number of environmental and social impacts in the Use phase. Some of 

these impacts are evaluated as high significance: a high likelihood that this impact will 
take place in this phase. 
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2. We evaluated the Use phase as having low salience: this phase is of low importance for 

the environmental and social unsustainability on the mobile phone life cycle. 
 
3. In the Use phase of the Fairphone, we found 5 environmental impacts and 1 social 

impacts. The combination of the significance of impacts and salience of the Use phase 
resulted in 0 environmental hotspots and 0 social hotspots (see Table 9). Annex 3 gives 
an overview of the evaluation of impacts and lifecycle phases and the identification of 
hotspots. 

 
Table 9. Impacts and hotspots of the FP2 in the Use phase 

Lifecycle phase Environmental impacts Social impacts 

Use Acidification 
CO2 emissions 
Eutrophication 
Hazardous materials/Ecotoxicity 
Particulate matter 

Hazardous materials/Human toxicity 
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End of Life 
End of Life is the phase in which the mobile phone is no longer in use as the result of 
planned, functional or perceived obsolescence. These mobile phones disappear in dusty 
drawers, get sold for spare parts, disappear in the garbage or are partly or fully recycled. In 
countries with a sustainable electronic waste management system, mobile phones are 
collected for recycling at industrial recycling facilities, enabling the recovering of valuable 
metals. About 80% of the mobile phone can be effectively recycled [108]. 
 
The literature on the impact of the recycling of mobile phone and other small electronics 
focuses in particular on informal and small enterprise recycling in countries without a 
sustainable electronic waste management system. 
 
Composite Phone  

In many countries in the world, the recycling of e-waste is an informal activity13, taking place 
in urban environments. E-waste is disassembled and burned under circumstances in which 
workers lack measures and tools that prevent harm to themselves (Unsafe work) [110], as well 
as to their local communities and to the environment (Foodchain pollution, Drinking water 
pollution), e.g., [111]–[113]. Sometimes only valuable materials are taken out for recycling, 
such as the motherboard (PCB), and the rest is burned or discarded, resulting in the release of 
                                                        
13 We understand informal economic activity markets as economic exchange in the absence of formal regulation or a lack of 
effective enforcement of existing regulation This definition reflects what has been called the “legalistic” approach to the 
study of informal economies. For a summary of approaches and issues concerning informal economies see [109] 

Photo credit: SMART/Maja van der Velden 
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Hazardous materials in water, soil, and air (Ecotoxocity) [114] as well as harm to the workers 
and the local community (Reduced health, Human toxicity), e.g., [115], [116] 
 
The work of workers in the informal recycling sector is Precarious work, characterised by 
Low wages [117]. They often lack Information about hazardous materials [110]. Many 
workers and their families live in slums around the e-waste site [118], [119]. Land issues and 
evictions can result in Conflict [120].  
 
Hotspots Analysis of the Composite Phone in the End of Life phase 
 
1. We found a large number of environmental and social impacts in the End of Life phase. 

Several of these impacts are evaluated as high significance: a high likelihood that this 
impact will take place in this phase.  
 

2. We evaluated the End of Life phase as having high salience: a highly important source for 
environmental and social unsustainability on the mobile phone life cycle.  

 
3. In the End of Life phase of the Composite Phone, we found 3 environmental impacts and 

16 social impacts. The combination of the significance of impacts and salience of the End 
of Life phase resulted in 2 environmental hotspots and 13 social hotspots (hotspots in 
bold, see Table 10). Annex 3 gives an overview of the evaluation of impacts and lifecycle 
phases and the identification of hotspots. 

 
 

Table 10. Impacts and hotspots of the CP in the End of Life phase 

Lifecycle phase Environmental impacts Social impacts 

End of Life 1. CO2 emissions 
2. Hazardous 

materials/Ecotoxicity 
3. Particulate matter 

4. Food chain pollution 
5. Low wages 
6. Precarious work 
7. Unsafe work 
8. Drinking water pollution/Lack of access to 

drinking water 
9. Poor sanitation 
10. Reduced health/Reproductive health 

hazards 
11. Hazardous materials/Human toxicity 
12. Lack of information about hazardous 

materials  
13. Child labour 
14. Low literacy 
15. Lack of clean energy 
16. Conflict 
17. Corruption 
18. Illicit trade 
19. Living in slums 

 
Fairphone 2 

The Fairphone 2 is only available for the European market. Industrial recycling facilities are 
available in all these countries. Fairphone also has a take-back system for old Fairphones, 
offering free shipping labels through its website. In addition, in order to offset the 
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environmental and social impacts in the End of Life phase of mobile phones in general, 
Fairphone is implementing a recycling programme: for each kilo of Fairphones put in the 
market, Fairphone aims to buy a kilo of condemned mobile phones in countries without a 
sustainable e-waste recycling system. This take-back system is implemented in Ghana, 
Uganda, and Rwanda, in cooperation with partner organisations, such as ReCell Ghana and 
Closing the Loop. Condemned mobile phones are shipped to SIMS, the Netherlands, and 
Umicore, Belgium, where the mobile phones are dissembled, recycled, and valuable materials 
are recovered for use in new mobile phones and other products [121].  
Fairphone provides the following numbers concerning their take-back programme [121]: 

 
Figure 7. Fairphone take-back programme in numbers 

Fairphone’s take-back programme is able to off-set a large part of the environmental and 
social impacts in the End of Life phase of the FP2.  
Hotspots Analysis of the Fairphone 2 in the End of Life phase 
 
1. We found a large number of environmental and social impacts in the End of Life phase. 

Several of these impacts are evaluated as high significance: a high likelihood that this 
impact will take place in this phase.  
 

2. We evaluated the End of Life phase as having high salience: a highly important source for 
environmental and social unsustainability on the mobile phone life cycle.  

 
3. In the End of Life phase of the Fairphone 2, we found 3 environmental impacts and 1 

social impacts. The combination of the significance of impacts and salience of the End of 
Life phase resulted in 2 environmental hotspots and 1 social hotspot (hotspots in bold, 
see Table 11). Annex 3 gives an overview of the evaluation of impacts and lifecycle 
phases and the identification of hotspots. 

 
Table 11. Impacts and hotspots of the FP2 in the End of Life phase 

Lifecycle phase Environmental impacts Social impacts 

End of Life 1. CO2 emissions 
2. Hazardous 

materials/Ecotoxicity 
3. Particulate matter 

4. Hazardous materials/Human toxicity 



     
  

44 

 
Annex 1. Description of Planetary 
Boundaries and Social Foundation 
 
Planetary Boundaries [1] 
 

 
Figure 8. The Planetary Boundaries in their current state  

  
Ocean acidification 
Around a quarter of the CO2 that humanity emits into the atmosphere is ultimately dissolved in the 
oceans. Here it forms carbonic acid, altering ocean chemistry and decreasing the pH of the surface 
water. This increased acidity reduces the amount of available carbonate ions, an essential 'building 
block' used by many marine species for shell and skeleton formation. Beyond a threshold 
concentration, this rising acidity makes it hard for organisms such as corals and some shellfish and 
plankton species to grow and survive. Losses of these species would change the structure and 
dynamics of ocean ecosystems and could potentially lead to drastic reductions in fish stocks. 
Compared to pre-industrial times, surface ocean acidity has already increased by 30 per cent.  Unlike 
most other human impacts on the marine environment, which are often local in scale, the ocean 
acidification boundary has ramifications for the whole planet. It is also an example of how tightly 
interconnected the boundaries are, since atmospheric CO2 concentration is the underlying controlling 
variable for both the climate and the ocean acidification boundaries, although they are defined in terms 
of different Earth system thresholds. 
 
 



     
  

45 

Loss of biosphere integrity (biodiversity loss and extinctions) 
The Millennium Ecosystem Assessment of 2005 concluded that changes to ecosystems due to human 
activities were more rapid in the past 50 years than at any time in human history, increasing the risks 
of abrupt and irreversible changes. The main drivers of change are the demand for food, water, and 
natural resources, causing severe biodiversity loss and leading to changes in ecosystem services. These 
drivers are either steady, showing no evidence of declining over time, or are increasing in intensity. 
The current high rates of ecosystem damage and extinction can be slowed by efforts to protect the 
integrity of living systems (the biosphere), enhancing habitat, and improving connectivity between 
ecosystems while maintaining the high agricultural productivity that humanity needs. Further research 
is underway to improve the availability of reliable data for use as the 'control variables' for this 
boundary. 
 
Climate Change 
Recent evidence suggests that the Earth, now passing 400 ppmv CO2 in the atmosphere, has already 
transgressed the planetary boundary and is approaching several Earth system thresholds. We have 
reached a point at which the loss of summer polar sea-ice is almost certainly irreversible. This is one 
example of a well-defined threshold above which rapid physical feedback mechanisms can drive the 
Earth system into a much warmer state with sea levels metres higher than present. The weakening or 
reversal of terrestrial carbon sinks, for example through the on-going destruction of the world's 
rainforests, is another potential tipping point, where climate-carbon cycle feedbacks accelerate Earth's 
warming and intensify the climate impacts. A major question is how long we can remain over this 
boundary before large, irreversible changes become unavoidable.  
 
Land system change 
Land is converted to human use all over the planet. Forests, grasslands, wetlands and other vegetation 
types have primarily been converted to agricultural land. This land-use change is one driving force 
behind the serious reductions in biodiversity, and it has impacts on water flows and on the 
biogeochemical cycling of carbon, nitrogen and phosphorus and other important elements. While each 
incident of land cover change occurs on a local scale, the aggregated impacts can have consequences 
for Earth system processes on a global scale. A boundary for human changes to land systems needs to 
reflect not just the absolute quantity of land, but also its function, quality and spatial distribution. 
Forests play a particularly important role in controlling the linked dynamics of land use and climate, 
and is the focus of the boundary for land system change. 
 
Nitrogen and phosphorus flows to the biosphere and oceans 
The biogeochemical cycles of nitrogen and phosphorus have been radically changed by humans as a 
result of many industrial and agricultural processes. Nitrogen and phosphorus are both essential for 
plant growth, so fertilizer production and application is the main concern. Human activities now 
convert more atmospheric nitrogen into reactive forms than all of the Earth's terrestrial processes 
combined. Much of this new reactive nitrogen is emitted to the atmosphere in various forms rather 
than taken up by crops. When it is rained out, it pollutes waterways and coastal zones or accumulates 
in the terrestrial biosphere. Similarly, a relatively small proportion of phosphorus fertilizers applied to 
food production systems is taken up by plants; much of the phosphorus mobilized by humans also 
ends up in aquatic systems. These can become oxygen-starved as bacteria consume the blooms of 
algae that grow in response to the high nutrient supply. A significant fraction of the applied nitrogen 
and phosphorus makes its way to the sea, and can push marine and aquatic systems across ecological 
thresholds of their own. One regional-scale example of this effect is the decline in the shrimp catch in 
the Gulf of Mexico's 'dead zone' caused by fertilizer transported in rivers from the US Midwest. 
 
Freshwater consumption and the global hydrological cycle 
The freshwater cycle is strongly affected by climate change and its boundary is closely linked to the 
climate boundary, yet human pressure is now the dominant driving force determining the functioning 
and distribution of global freshwater systems. The consequences of human modification of water 
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bodies include both global-scale river flow changes and shifts in vapour flows arising from land use 
change. These shifts in the hydrological system can be abrupt and irreversible. Water is becoming 
increasingly scarce - by 2050 about half a billion people are likely to be subject to water-stress, 
increasing the pressure to intervene in water systems.  A water boundary related to consumptive 
freshwater use and environmental flow requirements has been proposed to maintain the overall 
resilience of the Earth system and to avoid the risk of 'cascading' local and regional thresholds. 
 
Introduction of novel entities (previously called Chemical pollution) 
Emissions of toxic and long-lived substances such as synthetic organic pollutants, heavy metal 
compounds and radioactive materials represent some of the key human-driven changes to the 
planetary environment. These compounds can have potentially irreversible effects on living organisms 
and on the physical environment (by affecting atmospheric processes and climate). Even when the 
uptake and bioaccumulation of chemical pollution is at sub-lethal levels for organisms, the effects of 
reduced fertility and the potential of permanent genetic damage can have severe effects on ecosystems 
far removed from the source of the pollution. For example, persistent organic compounds have caused 
dramatic reductions in bird populations and impaired reproduction and development in marine 
mammals. There are many examples of additive and synergic effects from these compounds, but these 
are still poorly understood scientifically.  At present, we are unable to quantify a single chemical 
pollution boundary, although the risk of crossing Earth system thresholds is considered sufficiently 
well-defined for it to be included in the list as a priority for precautionary action and for further 
research. 
 
Stratospheric ozone depletion 
The stratospheric ozone layer in the atmosphere filters out ultraviolet (UV) radiation from the sun. If 
this layer decreases, increasing amounts of UV radiation will reach ground level. This can cause a 
higher incidence of skin cancer in humans as well as damage to terrestrial and marine 
biological systems. The appearance of the Antarctic ozone hole was proof that increased 
concentrations of anthropogenic ozone-depleting chemical substances, interacting with polar 
stratospheric clouds, had passed a threshold and moved the Antarctic stratosphere into a new regime. 
Fortunately, because of the actions taken as a result of the Montreal Protocol, we appear to be on the 
path that will allow us to stay within this boundary.    
 
Atmospheric aerosol loading 
An atmospheric aerosol planetary boundary was proposed primarily because of the influence of 
aerosols on Earth's climate system. Through their interaction with water vapour, aerosols play a 
critically important role in the hydrological cycle affecting cloud formation and global-scale and 
regional patterns of atmospheric circulation, such as the monsoon systems in tropical regions. They 
also have a direct effect on climate, by changing how much solar radiation is reflected or absorbed in 
the atmosphere. Humans change the aerosol loading by emitting atmospheric pollution (many 
pollutant gases condense into droplets and particles), and also through land-use change that increases 
the release of dust and smoke into the air. Shifts in climate regimes and monsoon systems have 
already been seen in highly polluted environments, giving a quantifiable regional measure for an 
aerosol boundary. A further reason for an aerosol boundary is that aerosols have adverse effects on 
many living organisms. Inhaling highly polluted air causes roughly 800,000 people to die prematurely 
each year. The toxicological and ecological effects of aerosols may thus relate to other Earth system 
thresholds. However, the behaviour of aerosols in the atmosphere is extremely complex, depending on 
their chemical composition and their geographical location and height in the atmosphere. While many 
relationships between aerosols, climate and ecosystems are well established, many causal links are yet 
to be determined.  
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Social Dimensions and their indicators [101] 
 

Table 12. The social foundation and its indicators of shortfall [3, p. 255] 

Dimension Illustrative Indicators 
(% of global population unless otherwise stated) 

% Year Source 

Food Population undernourished 11 2014-2016 FAO 

Health Population living in countries with under-five mortality rate 
exceeding 25 per 1,000 live births 

46 2015 World Bank 

Population living in countries with a life expectancy at birth 
of less than 70 years 

39 2013 World Bank 

Education Adult population (aged +15) who are illiterate 15 2013 UNESCO 

Children aged 12-15 out of school 17 2013 UNESCO 

Income & 
Work 

Population living on less that the international poverty limit 
of $3.10 a day 

29 2012 World Bank 

Proportion of young people /aged 15-24) seeking but not 
able to find work 

13 2014 ILO 

Water & 
Sanitation 

Population without access to improved drinking water 9 2015 WHO/UNICEF 

Population without access to improved sanitation 32 2015 WHO/UNICEF 

Energy Population lacking access to electricity 17 2013 OECD/IEA 

Population lacking access to clean cooking facilities 38 2013 OECD/IEA 

Networks Population stating that they are without someone to count on 
for help in times of trouble 

24 2015 Gallup 

Population without access to the Internet 57 2015 ITU 

Housing Global urban population living in slum housing in 
developing countries 

24 2012 UN 

Gender 
equality 

Representation gap between women and men in national 
parliaments 

56 2014 World Bank 

Worldwide earnings gap between women and men 23 2009 ILO 

Social equity Population living in countries with a Palma ratio of 2 or 
more (ratio of the income share of the top 10% of people to 
that of the bottom 40%) 

39 1995-2012 World Bank 

Political voice Population living in countries scoring 0.5 or less out of 1.0 
in the Voice and Accountability Index 

52 2013 World Bank 

Peace & 
Justice 

Population living in countries scoring 50 or less out of 100 
in the Corruption Perceptions Index 

85 2014 Transparency 
International 

Population living in countries with a homicide rate of 10 or 
more per 10,000 

13 2008-2013 UNODC 

 
 
 
Food 
Ending hunger and achieving food security is the focus of SDG Goal 2. Here undernourishment is 
assessed in terms of inadequate caloric intake. The indicator used, as defined by the UN FAO, is the 
probability that a randomly selected individual from the population consumes below the minimum 
dietary energy requirement, which varies by gender and age, and for different levels of physical 
activity. Data are given as a three-year average for 2014-16 (FAO 2015a). These data would ideally be 
accompanied by an indicator of malnourishment to reflect the lack of nutrient balance in many 
people’s diets. An internationally comparable indicator of women’s dietary diversity is currently under 
development but data are not yet available globally (FAO 2015b). In the future it will provide a highly 
valuable complementary measure. 
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Health 
Ensuring healthy lives and promoting wellbeing for all is the focus of SDG Goal 3. Two indicators are 
used here to assess shortfalls in access to health care: under-five child mortality and life expectancy at 
birth, both selected for being recognised proxies for wider health outcomes. The under-five mortality 
rate is the probability per 1,000 that a newborn baby will die before reaching age five, based on age-
specific mortality rates of the specified year. Data are given for 2015 (World Bank 2015b). The 
benchmark is the international target for all countries to reduce under-five mortality to at least as low 
as 25 per 1,000 live births by 2030 (WHO 2015). Life expectancy at birth indicates the number of 
years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay 
the same throughout its life. Data are given for 2013 (World Bank 2015b). No equivalent international 
benchmark has been established. A life expectancy at birth of 70 years is selected here as a 
benchmark, being an outcome typically achieved by countries classified under medium human 
development according to UNDP’s Human Development Index (UNDP 2015). 
 
Education 
Ensuring quality education and lifelong learning opportunities for all is the focus of SDG Goal 4. 
Here, two indicators for educational deprivations are used so as to reflect achievements and outcomes  
across diverse population age groups. For the school-aged population, the proportion of adolescents  
not enrolled in lower secondary school (typically ages 12 to 15 years) is used. Data are given for 2013 
(UNESCO 2015a). For the adult population, the chosen indicator is the rate of adult illiteracy, defined 
as adults aged over 15 years who are unable to read and write a simple sentence . Data are given for 
2013 (UNESCO 2015b).  
 
Income and Work 
Ending poverty, including income poverty, is the focus of SDG 1 and promoting decent work is 
among the commitments of SDG 8. Deprivation in terms of income is assessed with the internationally 
established poverty line of $3.10 per person per day, calculated by the World Bank on the basis of 
purchasing power parity at 2011 prices. Data are given for 2012 (World Bank 2015a). This indicator is 
used instead of the often-cited extreme poverty line of $1.90 per person per day (popularly known as 
the ‘dollar a day’ measure) because the cut-off point for extreme poverty does not constitute a social 
foundation of income for a life of dignity and opportunity. Given the importance of paid work as a 
means to income, and its centrality in many people’s lives, it would be highly desirable to include a 
composite indicator of decent work, defined as ‘the opportunity of women and men to obtain decent 
and productive work in conditions of freedom, equity, security and human dignity’ (ILO 1999). 
However such a composite indicator is not yet available. As a proxy indicator for assessing the 
availability of work, youth unemployment is used instead, measuring the proportion of young people 
(aged 15-24) who are seeking but unable to find work (ILO 2015). It is likely, however, to undercount 
those youth who, through force of poverty and circumstance, must accept any work, no matter how 
poorly paid or exploitative.  
 
Water & sanitation 
Ensuring safe water and adequate sanitation for all is the focus of SDG 6. Deprivations in access to 
water and sanitation services are assessed here on the basis of two widely used indicators. Inadequate 
access to water is given by the proportion of people who do not have access to an improved drinking 
water source, such as piped household water, public taps, protected wells and springs, or collected 
rainwater. Inadequate access to sanitation is given by the proportion of people who do not have access 
to improved sanitation facilities such as flush toilets, ventilated improved pit latrines, or composting 
toilets. For both indicators, data are given for 2015 (WHO/UNICEF 2015). 
 
Energy 
Ensuring access to energy for all is the focus of SDG 7. Deprivations in access to energy assessed here 
include both electricity and the quality of cooking facilities. Inadequate access to electricity is assessed 
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as the proportion of people who do not enjoy a household electricity supply accompanied by 
aminimum level of electricity consumption. In rural areas the specified minimum per household is 250  
kWh per year, which provides, for example, for the use of a floor fan, a mobile phone, and two 
compact fluorescent light bulbs for about five hours per day. In urban areas, the specified minimum 
per household is 500 kWh per year, for which consumption might additionally include an efficient 
refrigerator, a second mobile telephone, and another appliance such as a computer or small television.  
Inadequate cooking facilities are assessed as the proportion of people who do not have access to 
electricity and who rely on the traditional use of solid biomass (such as fuelwood, charcoal, tree 
leaves, crop residues and animal dung) for cooking. For both indicators, data are given for 2013 
(OECD/IEA 2015). 
 
Networks 
Digital communications networks and person-to-person social support networks are both important 
means of generating opportunity, building community and increasing resilience, and they tend to be 
mutually supportive. In the context of the SDGs, Target 9.c promotes ‘universal and affordable access 
to the Internet’ and Target 1.5 commits to ‘build the resilience of the poor and those in vulnerable 
situations’. Here, deprivation in terms of access to digital communications networks is assessed as the 
proportion of people not using the Internet, and estimated global data are given for 2015 (ITU 2015).  
These estimates are derived from data on the percentage of households with Internet access at home, 
and so overestimate the shortfall. Future international data will preferably also take account of users of 
public Internet access, such as through libraries, post offices, community centres, Internet cafes, and 
schools (ITU 2014). Deprivation in terms of lacking a network of social support is assessed here on 
the basis of self-reported data through the Gallup World Poll survey. Conducted in 140 countries, the 
urvey asks the question, ‘If you were in trouble, do you have relatives or friends you can count on to 
help you whenever you need them, or not?’ Data are given for 2015 (Gallup World Poll). 
 
Housing 
Ensuring safe and affordable housing and upgrading slums is central to SDG 11. Internationally 
comparable data on housing conditions are currently limited to the proportion of the urban population 
in developing countries who are living in slums. Such slum housing is defined as having at least one of 
the following four characteristics: lack of access to improved drinking water; lack of access to 
improved sanitation; overcrowding (more than three persons per room); and dwellings made of non-
durable material. Given this definition, there will be some overlap with indicators assessing 
deprivations in access to improved water and sanitation. Here the data are expressed as the proportion 
of the global urban population that is living in slum conditions in developing countries. Data are given 
for 2012 (UN 2014).  Given that just under half of the global population lives in rural areas, a 
highly desirable complementary indicator for assessing housing deprivation would address the 
conditions of rural housing but such an indicator has not yet been developed. Data on the percentage 
of people living in inadequate housing conditions, both urban and rural, in high-income countries 
would also be desirable to include. 
 
Social equity 
Reducing inequality within and among countries is the focus of SDG 10. Here the shortfall in social 
equity is measured on the basis of national income inequalities. The indicator used is the Palma ratio, 
which is the ratio of the income of the top 10% to that of the bottom 40% within a nation. The Palma 
ratio is chosen here over the Gini coefficient because it is more sensitive to inequalities of income at 
the extremes of wealth and poverty (Cobham, Schlogl and Sumner 2015). A benchmark is set at a 
Palma ratio of 2, which occurs when the richest10% in a country have double the annual income of the 
poorest 40%, and is equivalent to a Gini coefficient of approximately 0.35 (Cobham and Sumner, 
2013). Hence the indicator gives the proportion of the global population that lives in countries in 
which the Palma ratio is 2 or greater. Data are given for the most recent available year, 1995-2012 
(World Bank 2015b). 
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Gender equality 
Achieving gender equality and empowering all women and girls is the focus of SDG 5. It would be 
ideal to assess the extent of gender inequality in each of the social foundation’s dimensions but as 
proxy measures, two indicators are chosen which are indicative of inequalities in women and men’s 
roles and status in political and economic life. For assessing inequalities in the political realm, the 
indicator is derived from the proportion of seats held by women in national parliaments. Data are 
given for 2014 (World Bank 2015b). The indicator value is calculated such that if women held no 
parliamentary seats globally, the deprivation would be 100%, whereas if women held exactly half of 
all parliamentary seats, the deprivation would be 0%.For assessing inequalities in the economic realm, 
the gender pay gap is used, which is based on survey data from a diverse sample of 48countries. Data 
are given for 2008-09. The indicator is the percentage gap between women and men’s pay, based on 
international estimates of women’s earnings as a proportion of men’s (ILO 2011).Gender inequalities 
and income inequalities are of course just two among many dimensions of social inequality. 
Internationally comparable indicators of inequalities based on other social differences, such as 
ethnicity, age, religion, disability, language, sexual orientation, and location, would also be desirable 
for inclusion.  
 
Political voice 
Ensuring ‘responsive, inclusive, participatory and representative decision-making at all levels’ is the 
focus of SDG Target 16.7. The indicator used here as a proxy for the shortfall of political voice is the 
Voice and Accountability Index, which is a component of the World Bank’s Worldwide Governance 
Indicators. The Index is scored on a scale of 0 (very poor performance) to 1 (very high performance) 
and includes measures of democracy, vested interests, accountability of public officials, human rights, 
and freedom of association. It is created through expert assessment by over 500 correspondents and is 
reviewed for consistency by a panel of regional experts. Data are given for 2013 (World Bank 2015c). 
Here, a benchmark is set at 0.5, hence the social foundation indicator denotes the proportion of the 
global population living in countries with a score of 0.5 or less on the Voice and Accountability Index.  
 
Peace & justice 
Promoting peaceful and inclusive societies and providing access to central to SDG 16. Two indicators 
are used here in order to assess shortfalls in peace and in justice respectively. The indicator used as a 
proxy for the shortfall in peace is the rate of intentional homicide, which is unlawful death 
purposefully inflicted on a person by another person. It does not include killings in war or conflicts, 
however an indicator that did also take account of these would be preferable. A benchmark is set at 10 
or more homicide deaths per 100,000 population per year and data are given for the most recent year, 
2008-2013 (UNODC 2015). The indicator used as a proxy for shortfall in justice is Transparency 
International’s Corruption Perceptions Index, which scores countries according to how corrupt their 
public sector is perceived to be, on a scale of 0 (highly corrupt) to 100 (very clean). National scores 
are compiled using data sources from independent institutions specialising in governance and business 
climate analysis. Data are given for 2014 (Transparency International 2014). Here, a benchmark is set 
at a score of 50 or below, hence the social foundation indicator denotes the proportion of the world’s 
population living in countries that score 50 or less in the Corruption Perceptions Index. 
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Annex 2. Risks in the lifecycle of 
mobile phones 
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Annex 3. Hotspots Analysis (Summary) 
 
Step 2, 3, and 4 in the Sustainability Hot Spots Analysis  
 
Step 2: Assessing defined aspects within each lifecycle 
Step 3: Assessing defined aspects between the different life cycle phases 
Step 4: Identification of environmental and social hotspots (hotspot = yellow) 
 
Literature and stakeholders consultations inform the ranking from 0 to 3: 
 
0 = no data found 
1 = low significance or salience 
2 = moderate significance or salience 
3 = high significance or salience 
 
In Step 2, the significance of each impact is specified. 
 

Step 2. Assessing defined aspects within each lifecycle phase 
Planetary 
boundaries 

Impact 
categories 

Lifecycle phases 
Resource 
Extraction 

Manufacturing Transport Use End of Life 

CP FP2 CP FP2 CP FP2 CP FP2 CP FP2 
Ocean 
acidification 

Acidification 2 2 2 2 2 2 2 2 0 0 

Change in 
biosphere 
integrity 

Biodiversity loss 3 3 0 0 0 0 0 0 0 0 

Climate 
change 

CO2 emissions 1 1 3 2 3 3 3 3 1 1 

Land-system 
change 

Deforestation 2 2 0 0 0 0 0 0 0 0 

Biogeochemic
al flows  

Eutrophication 2 2 3 3 3 3 3 3 0 0 

Fresh water 
use 

Excessive water 
use 

2 2 3 3 0 0 0 0 0 0 

Introduction 
of novel 
entities 

Hazardous 
materials: 
- Ecotoxicity 

3 
 

3 3 2 1 1 1 1 3 2 

Stratospheric 
ozone 
depletion 

Ozone depletion 1 1 2 2 0 0 0 0 0 0 

Atmospheric 
aerosol 
loading 

Particulate 
matter 

2 2 3 3 3 3 1 1 3 2 

Social 
dimensions 

Impact 
categories 

Lifecycle phase 
Resource 
Extraction 

Manufacturing Transport Use End of Life 

CP FP2 CP FP214 CP FP2 CP FP2 CP FP215 

                                                        
14 Fairphone has almost 100 suppliers for the manufactoring of the Fairphone 2 [100]. Ten of the suppliers participate in 
suppliers engagement initatives to improve the supply chain, e.g. [102]. For the analysis of hotspots in the Manufacturing 
phase, we focuses on the FP2 Tier 1 supplier Hi-P Suzhou EMS from Suzhou, China. Hi-P participates in a supplier 
engagement initiative. The company is audited by the independent organisation TAOS (taosnetwork.org) [105].  
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Food Foodchain 
pollution 

2 2 0 0 0 0 0 0 2 0 

Land use 
change 

1 1 0 0 0 0 0 0 0 0 

Income & 
Work 

Excessive 
overtime 

3 2 3 1 0 0 0 0 0 0 

Low wages 3 2 3 1 0 0 0 0 3 0 
Forced labour 1 1 1 0 0 0 0 0 0 0 
Precarious 
work 

3 2 3 2 0 0 0 0 3 0 

Non-union work 2 1 2 1 0 0 0 0 0 0 
Unsafe work 3 1 3 0 0 0 0 0 3 0 

Water & 
Sanitation 
 
 

Drinking water 
pollution/lack of 
access 

3 2 1 1 0 0 0 0 3 0 

Poor sanitation 1 1 0 0 0 0 0 0 1 0 
Health Reduced 

health/reproduc
tive hazards 

3 2 3 0 0 0 0 0 3 0 

Hazardous 
materials/ 
Human toxicity 

3 2 3 2 3 3 3 3 3 2 

Lack of 
information 
about 
hazardous 
materials 

3 2 3 0 0 0 0 0 3 0 

Education Child labour 3 2 1 0 0 0 0 0 2 0 
Low literacy 2 1 0 0 0 0 0 0 2 0 

Energy Lack of clean 
energy 

1 1 0 0 0 0 0 0 1 0 

Gender 
equality 

Lack of equal 
opportunities  

1 1 1 0 0 0 0 0 0 0 

Social equity Discrimination 1 1 1 0 0 0 0 0 0 0 
Voice Forced 

relocation 
1 1 0 0 0 0 0 0 0 0 

Lack of 
representation 
(local 
community) 

1 1 0 0 0 0 0 0 0 0 

Peace & 
Justice 

Conflict 3 0 0 0 0 0 0 0 1 0 
Corruption 2 2 0 0 0 0 0 0 2 0 
Illicit trade 3 2 0 0 0 0 0 0 3 0 
Sexual violence 2 1 0 0 0 0 0 0 0 0 

Housing Living in slums 3 1 0 0 0 0 0 0 3 0 
Networks P2P network  0 0 0 0 0 0 0 0 0 0 

Households 
with Internet 

0 0 0 0 0 0 0 0 0 0 

 
Step 3 of the Hotspots Analysis is an assessment of the salience of each lifecycle phase for the whole 
mobile phone lifecycle. The assessment is based on the number of impacts in a certain phase. 
 
Step 3. Assessing defined aspects between the different life cycle phases 
Aspects Lifecycle phase 

Resource 
Extraction 

Manufacturing Transport Use End of Life 

Environmental aspects 3 3 1 1 3 
Social aspects 3 3 1 1 3 

                                                                                                                                                                             
15 Fairphone has a take-back system in place, offering free shipping of condemned Fairphones to Amsterdam. In addition, 
Fairphone buys up condemned phones in Ghana, Kenya, and Rwanda (one kilo condemned phones for each kilo of 
Fairphones sold) for recycling in the Netherlands and Belgium. 
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Step 4 of the Hotspots Analysis, the identification of hotspots, is based on the multiplication of the 
significance of an impact with the salience of the phase with which it is associated. The scores of Step 2 are 
multiplied with the values of Step 3. 
 
Step 4. Identification of environmental and social hotspots 
Planetary 
boundaries 

Impact 
categories 

Lifecycle phase 
Resource 
Extraction 

Manufacturing Transport Use End of Life 

CP FP2 CP FP2 CP FP2 CP FP2 CP FP2 
Ocean 
acidification 

Acidification 6 6 6 6 2 2 2 2 0 0 

Change in 
biosphere 
integrity 

Biodiversity loss 9 9 0 0 0 0 0 0 0 0 

Climate 
change 

CO2 emissions 3 3 9 6 3 3 3 3 3 3 

Land-system 
change 

Deforestation 6 6 0 0 0 0 0 0 0 0 

Biogeochemic
al flows  

Eutrophication 6 6 9 9 3 3 3 3 0 0 

Fresh water 
use 

Excessive water 
use 

6 6 9 9 0 0 0 0 0 0 

Introduction 
of novel 
entities 

Hazardous 
materials/ 
Ecotoxicity 

9 6 9 
 

6 1 
 

1 1 1 9 
 

6 

Stratospheric 
ozone 
depletion 

Ozone depletion 3 3 6 6 0 0 0 0 0 0 

Atmospheric 
aerosol 
loading 

Particulate 
matter 

6 6 9 9 3 3 3 3 9 6 

Social 
dimensions 

Life cycle 
phase 

Lifecycle phase 
Resource 
Extraction 

Manufacturing Transport Use End of Life 

CP FP2 CP FP2 CP FP2 CP FP2 CP FP2 
Food Foodchain 

pollution 
6 6 0 0 0 0 0 0 6 0 

Land use 
change 

3 3 0 0 0 0 0 0 0 0 

Income & 
Work 

Excessive 
overtime 

9 6 9 3 0 0 0 0 0 0 

Low wages 9 6 9 3 0 0 0 0 9 0 
Forced labour 3 3 3 0 0 0 0 0 0 0 
Precarious 
work 

9 6 9 6 0 0 0 0 9 0 

No union work 6 3 6 3 0 0 0 0 0 0 
Unsafe work 9 3 9 0 0 0 0 0 9 0 

Water & 
Sanitation 

Drinking water 
pollution/lack of 
access 

9 6 3 3 0 0 0 0 9 0 

Poor sanitation 3 3 0 0 0 0 0 0 3 0 
Health Reduced 

health/reproduc
tive hazards 

9 6 9 0 0 0 0 0 9 0 

Hazardous 
materials/ 

9 6 9 6 3 3 3 3 9 6 
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Human toxicity 
Lack of 
information 
about 
hazardous 
materials 

9 6 9 0 0 0 0 0 9 0 

Education Child labour 9 6 3 0 0 0 0 0 6 0 
Low literacy 6 3 0 0 0 0 0 0 6 0 

Energy Lack of clean 
energy 

3 3 0 0 0 0 0 0 3 0 

Gender 
equality 

Lack of equal 
opportunities  

3 3 3 0 0 0 0 0 0 0 

Social equity Discrimination 3 3 3 0 0 0 0 0 0 0 
Voice Forced 

relocation 
3 3 0 0 0 0 0 0 0 0 

Lack of 
representation 
(local 
community) 

3 3 0 0 0 0 0 0 0 0 

Peace & 
Justice 

Conflict 9 0 0 0 0 0 0 0 3 0 
Corruption 6 6 0 0 0 0 0 0 6 0 
Illicit trade 9 6 0 0 0 0 0 0 9 0 
Sexual violence 6 3 0 0 0 0 0 0 0 0 

Housing Living in slums 9 3 0 0 0 0 0 0 9 0 
Networks P2P network  0 0 0 0 0 0 0 0 0 0 

Households 
with Internet 

0 0 0 0 0 0 0 0 0 0 
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Annex 4. Literature Review 
 
The literature review Environmental and Social Risks and Hotspots in the Mobile Phone Lifecycle 
consists of a systematic literature review of scientific resources and a systematic literature of grey 
literature. This resulted in a database of 304 articles and reports. These resources were coded and 
resulted in an initial set of risks. While developing the risks catalogue and implementing the hotspots 
analysis, additional resources were identified in order to provide more recent data or to confirm initial 
findings. This Literature Review does not present a comprehensive review of all relevant literature. 
The final count for this report is as follows: 
 

§ Scientific literature: 298 resources 
§ Lifecycle assessments of mobile phones: 21 
§ Grey literature: 88 resources 
§ Fairphone: 52 resources 
 

Scientific literature (peer-reviewed) 

Adesola, F. (2015). Congo DR and the Intrigues of Resource-Based Conflict. African Research Review, 9(1), 
62–72. https://doi.org/10.4314/afrrev.v9i1.6 

Agnieszka, B., Tomasz, C., & Jerzy, W. (2014). Chemical properties and toxicity of soils contaminated by 
mining activity. Ecotoxicology, 23(7), 1234–1244. https://doi.org/10.1007/s10646-014-1266-y 

Agyapong, E. A., Besseah, M. A., & Fei-Baffoe, B. (2012). Effects of Small-Scale Gold Mining on Surface and 
Ground Water Quality in the Bogoso/Preastea Mining Area. Journal of the Ghana Science Association, 
14(2), 11–19. 

Agyei, G. (2016). Internationalisation of Artisanal and Small Scale Mining in Ghana: Opportunities and 
Challenges. Ghana Mining Journal, 16(2), 20–27. 

Agyei-Mensah, S., & Oteng-Ababio, M. (2012). Perceptions of health and environmental impacts of e-waste 
management in Ghana. International Journal of Environmental Health Research, 22(6), 500–517. 
https://doi.org/10.1080/09603123.2012.667795 

Agyemang, I. (2010). Population dynamics and health hazards of small-scale mining activity in the Bolgatanga 
and Talensi-Nabdam districts of the upper east region of Ghana. Indian Journal of Science and 
Technology, 3(10), 1113–1120. 

Ahluwalia, P., Setia, A., & Nema, A. K. (2013). Assessment of relative hazard potential of popular e-waste 
categories during landfilling. Asian Journal of Water, Environment and Pollution, 10(3), 81–93. 

Akabzaa, T. M., Banoeng-Yakubo, B. K., & Seyire, J. S. (2007). Impact of mining activities on water resources 
in the vicinity of the Obuasi mine. West African Journal of Applied Ecology, 11(1). 
https://doi.org/10.4314/wajae.v11i1.45719 

Akormedi, M. K. (2012). Working Conditions of Electronic Waste Workers at Abgogbloshie, Accra. University 
of Ghana, Accra. 
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